Viewing file: test_overrides.py (19.66 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
import inspect import sys import os import tempfile from io import StringIO from unittest import mock
import numpy as np from numpy.testing import ( assert_, assert_equal, assert_raises, assert_raises_regex) from numpy.core.overrides import ( _get_implementing_args, array_function_dispatch, verify_matching_signatures, ARRAY_FUNCTION_ENABLED) from numpy.compat import pickle import pytest
requires_array_function = pytest.mark.skipif( not ARRAY_FUNCTION_ENABLED, reason="__array_function__ dispatch not enabled.")
def _return_not_implemented(self, *args, **kwargs): return NotImplemented
# need to define this at the top level to test pickling @array_function_dispatch(lambda array: (array,)) def dispatched_one_arg(array): """Docstring.""" return 'original'
@array_function_dispatch(lambda array1, array2: (array1, array2)) def dispatched_two_arg(array1, array2): """Docstring.""" return 'original'
class TestGetImplementingArgs:
def test_ndarray(self): array = np.array(1)
args = _get_implementing_args([array]) assert_equal(list(args), [array])
args = _get_implementing_args([array, array]) assert_equal(list(args), [array])
args = _get_implementing_args([array, 1]) assert_equal(list(args), [array])
args = _get_implementing_args([1, array]) assert_equal(list(args), [array])
def test_ndarray_subclasses(self):
class OverrideSub(np.ndarray): __array_function__ = _return_not_implemented
class NoOverrideSub(np.ndarray): pass
array = np.array(1).view(np.ndarray) override_sub = np.array(1).view(OverrideSub) no_override_sub = np.array(1).view(NoOverrideSub)
args = _get_implementing_args([array, override_sub]) assert_equal(list(args), [override_sub, array])
args = _get_implementing_args([array, no_override_sub]) assert_equal(list(args), [no_override_sub, array])
args = _get_implementing_args( [override_sub, no_override_sub]) assert_equal(list(args), [override_sub, no_override_sub])
def test_ndarray_and_duck_array(self):
class Other: __array_function__ = _return_not_implemented
array = np.array(1) other = Other()
args = _get_implementing_args([other, array]) assert_equal(list(args), [other, array])
args = _get_implementing_args([array, other]) assert_equal(list(args), [array, other])
def test_ndarray_subclass_and_duck_array(self):
class OverrideSub(np.ndarray): __array_function__ = _return_not_implemented
class Other: __array_function__ = _return_not_implemented
array = np.array(1) subarray = np.array(1).view(OverrideSub) other = Other()
assert_equal(_get_implementing_args([array, subarray, other]), [subarray, array, other]) assert_equal(_get_implementing_args([array, other, subarray]), [subarray, array, other])
def test_many_duck_arrays(self):
class A: __array_function__ = _return_not_implemented
class B(A): __array_function__ = _return_not_implemented
class C(A): __array_function__ = _return_not_implemented
class D: __array_function__ = _return_not_implemented
a = A() b = B() c = C() d = D()
assert_equal(_get_implementing_args([1]), []) assert_equal(_get_implementing_args([a]), [a]) assert_equal(_get_implementing_args([a, 1]), [a]) assert_equal(_get_implementing_args([a, a, a]), [a]) assert_equal(_get_implementing_args([a, d, a]), [a, d]) assert_equal(_get_implementing_args([a, b]), [b, a]) assert_equal(_get_implementing_args([b, a]), [b, a]) assert_equal(_get_implementing_args([a, b, c]), [b, c, a]) assert_equal(_get_implementing_args([a, c, b]), [c, b, a])
def test_too_many_duck_arrays(self): namespace = dict(__array_function__=_return_not_implemented) types = [type('A' + str(i), (object,), namespace) for i in range(33)] relevant_args = [t() for t in types]
actual = _get_implementing_args(relevant_args[:32]) assert_equal(actual, relevant_args[:32])
with assert_raises_regex(TypeError, 'distinct argument types'): _get_implementing_args(relevant_args)
class TestNDArrayArrayFunction:
@requires_array_function def test_method(self):
class Other: __array_function__ = _return_not_implemented
class NoOverrideSub(np.ndarray): pass
class OverrideSub(np.ndarray): __array_function__ = _return_not_implemented
array = np.array([1]) other = Other() no_override_sub = array.view(NoOverrideSub) override_sub = array.view(OverrideSub)
result = array.__array_function__(func=dispatched_two_arg, types=(np.ndarray,), args=(array, 1.), kwargs={}) assert_equal(result, 'original')
result = array.__array_function__(func=dispatched_two_arg, types=(np.ndarray, Other), args=(array, other), kwargs={}) assert_(result is NotImplemented)
result = array.__array_function__(func=dispatched_two_arg, types=(np.ndarray, NoOverrideSub), args=(array, no_override_sub), kwargs={}) assert_equal(result, 'original')
result = array.__array_function__(func=dispatched_two_arg, types=(np.ndarray, OverrideSub), args=(array, override_sub), kwargs={}) assert_equal(result, 'original')
with assert_raises_regex(TypeError, 'no implementation found'): np.concatenate((array, other))
expected = np.concatenate((array, array)) result = np.concatenate((array, no_override_sub)) assert_equal(result, expected.view(NoOverrideSub)) result = np.concatenate((array, override_sub)) assert_equal(result, expected.view(OverrideSub))
def test_no_wrapper(self): # This shouldn't happen unless a user intentionally calls # __array_function__ with invalid arguments, but check that we raise # an appropriate error all the same. array = np.array(1) func = lambda x: x with assert_raises_regex(AttributeError, '_implementation'): array.__array_function__(func=func, types=(np.ndarray,), args=(array,), kwargs={})
@requires_array_function class TestArrayFunctionDispatch:
def test_pickle(self): for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): roundtripped = pickle.loads( pickle.dumps(dispatched_one_arg, protocol=proto)) assert_(roundtripped is dispatched_one_arg)
def test_name_and_docstring(self): assert_equal(dispatched_one_arg.__name__, 'dispatched_one_arg') if sys.flags.optimize < 2: assert_equal(dispatched_one_arg.__doc__, 'Docstring.')
def test_interface(self):
class MyArray: def __array_function__(self, func, types, args, kwargs): return (self, func, types, args, kwargs)
original = MyArray() (obj, func, types, args, kwargs) = dispatched_one_arg(original) assert_(obj is original) assert_(func is dispatched_one_arg) assert_equal(set(types), {MyArray}) # assert_equal uses the overloaded np.iscomplexobj() internally assert_(args == (original,)) assert_equal(kwargs, {})
def test_not_implemented(self):
class MyArray: def __array_function__(self, func, types, args, kwargs): return NotImplemented
array = MyArray() with assert_raises_regex(TypeError, 'no implementation found'): dispatched_one_arg(array)
@requires_array_function class TestVerifyMatchingSignatures:
def test_verify_matching_signatures(self):
verify_matching_signatures(lambda x: 0, lambda x: 0) verify_matching_signatures(lambda x=None: 0, lambda x=None: 0) verify_matching_signatures(lambda x=1: 0, lambda x=None: 0)
with assert_raises(RuntimeError): verify_matching_signatures(lambda a: 0, lambda b: 0) with assert_raises(RuntimeError): verify_matching_signatures(lambda x: 0, lambda x=None: 0) with assert_raises(RuntimeError): verify_matching_signatures(lambda x=None: 0, lambda y=None: 0) with assert_raises(RuntimeError): verify_matching_signatures(lambda x=1: 0, lambda y=1: 0)
def test_array_function_dispatch(self):
with assert_raises(RuntimeError): @array_function_dispatch(lambda x: (x,)) def f(y): pass
# should not raise @array_function_dispatch(lambda x: (x,), verify=False) def f(y): pass
def _new_duck_type_and_implements(): """Create a duck array type and implements functions.""" HANDLED_FUNCTIONS = {}
class MyArray: def __array_function__(self, func, types, args, kwargs): if func not in HANDLED_FUNCTIONS: return NotImplemented if not all(issubclass(t, MyArray) for t in types): return NotImplemented return HANDLED_FUNCTIONS[func](*args, **kwargs)
def implements(numpy_function): """Register an __array_function__ implementations.""" def decorator(func): HANDLED_FUNCTIONS[numpy_function] = func return func return decorator
return (MyArray, implements)
@requires_array_function class TestArrayFunctionImplementation:
def test_one_arg(self): MyArray, implements = _new_duck_type_and_implements()
@implements(dispatched_one_arg) def _(array): return 'myarray'
assert_equal(dispatched_one_arg(1), 'original') assert_equal(dispatched_one_arg(MyArray()), 'myarray')
def test_optional_args(self): MyArray, implements = _new_duck_type_and_implements()
@array_function_dispatch(lambda array, option=None: (array,)) def func_with_option(array, option='default'): return option
@implements(func_with_option) def my_array_func_with_option(array, new_option='myarray'): return new_option
# we don't need to implement every option on __array_function__ # implementations assert_equal(func_with_option(1), 'default') assert_equal(func_with_option(1, option='extra'), 'extra') assert_equal(func_with_option(MyArray()), 'myarray') with assert_raises(TypeError): func_with_option(MyArray(), option='extra')
# but new options on implementations can't be used result = my_array_func_with_option(MyArray(), new_option='yes') assert_equal(result, 'yes') with assert_raises(TypeError): func_with_option(MyArray(), new_option='no')
def test_not_implemented(self): MyArray, implements = _new_duck_type_and_implements()
@array_function_dispatch(lambda array: (array,), module='my') def func(array): return array
array = np.array(1) assert_(func(array) is array) assert_equal(func.__module__, 'my')
with assert_raises_regex( TypeError, "no implementation found for 'my.func'"): func(MyArray())
class TestNDArrayMethods:
def test_repr(self): # gh-12162: should still be defined even if __array_function__ doesn't # implement np.array_repr()
class MyArray(np.ndarray): def __array_function__(*args, **kwargs): return NotImplemented
array = np.array(1).view(MyArray) assert_equal(repr(array), 'MyArray(1)') assert_equal(str(array), '1')
class TestNumPyFunctions:
def test_set_module(self): assert_equal(np.sum.__module__, 'numpy') assert_equal(np.char.equal.__module__, 'numpy.char') assert_equal(np.fft.fft.__module__, 'numpy.fft') assert_equal(np.linalg.solve.__module__, 'numpy.linalg')
def test_inspect_sum(self): signature = inspect.signature(np.sum) assert_('axis' in signature.parameters)
@requires_array_function def test_override_sum(self): MyArray, implements = _new_duck_type_and_implements()
@implements(np.sum) def _(array): return 'yes'
assert_equal(np.sum(MyArray()), 'yes')
@requires_array_function def test_sum_on_mock_array(self):
# We need a proxy for mocks because __array_function__ is only looked # up in the class dict class ArrayProxy: def __init__(self, value): self.value = value def __array_function__(self, *args, **kwargs): return self.value.__array_function__(*args, **kwargs) def __array__(self, *args, **kwargs): return self.value.__array__(*args, **kwargs)
proxy = ArrayProxy(mock.Mock(spec=ArrayProxy)) proxy.value.__array_function__.return_value = 1 result = np.sum(proxy) assert_equal(result, 1) proxy.value.__array_function__.assert_called_once_with( np.sum, (ArrayProxy,), (proxy,), {}) proxy.value.__array__.assert_not_called()
@requires_array_function def test_sum_forwarding_implementation(self):
class MyArray(np.ndarray):
def sum(self, axis, out): return 'summed'
def __array_function__(self, func, types, args, kwargs): return super().__array_function__(func, types, args, kwargs)
# note: the internal implementation of np.sum() calls the .sum() method array = np.array(1).view(MyArray) assert_equal(np.sum(array), 'summed')
class TestArrayLike: def setup(self): class MyArray(): def __init__(self, function=None): self.function = function
def __array_function__(self, func, types, args, kwargs): try: my_func = getattr(self, func.__name__) except AttributeError: return NotImplemented return my_func(*args, **kwargs)
self.MyArray = MyArray
class MyNoArrayFunctionArray(): def __init__(self, function=None): self.function = function
self.MyNoArrayFunctionArray = MyNoArrayFunctionArray
def add_method(self, name, arr_class, enable_value_error=False): def _definition(*args, **kwargs): # Check that `like=` isn't propagated downstream assert 'like' not in kwargs
if enable_value_error and 'value_error' in kwargs: raise ValueError
return arr_class(getattr(arr_class, name)) setattr(arr_class, name, _definition)
def func_args(*args, **kwargs): return args, kwargs
@requires_array_function def test_array_like_not_implemented(self): self.add_method('array', self.MyArray)
ref = self.MyArray.array()
with assert_raises_regex(TypeError, 'no implementation found'): array_like = np.asarray(1, like=ref)
_array_tests = [ ('array', *func_args((1,))), ('asarray', *func_args((1,))), ('asanyarray', *func_args((1,))), ('ascontiguousarray', *func_args((2, 3))), ('asfortranarray', *func_args((2, 3))), ('require', *func_args((np.arange(6).reshape(2, 3),), requirements=['A', 'F'])), ('empty', *func_args((1,))), ('full', *func_args((1,), 2)), ('ones', *func_args((1,))), ('zeros', *func_args((1,))), ('arange', *func_args(3)), ('frombuffer', *func_args(b'\x00' * 8, dtype=int)), ('fromiter', *func_args(range(3), dtype=int)), ('fromstring', *func_args('1,2', dtype=int, sep=',')), ('loadtxt', *func_args(lambda: StringIO('0 1\n2 3'))), ('genfromtxt', *func_args(lambda: StringIO(u'1,2.1'), dtype=[('int', 'i8'), ('float', 'f8')], delimiter=',')), ]
@pytest.mark.parametrize('function, args, kwargs', _array_tests) @pytest.mark.parametrize('numpy_ref', [True, False]) @requires_array_function def test_array_like(self, function, args, kwargs, numpy_ref): self.add_method('array', self.MyArray) self.add_method(function, self.MyArray) np_func = getattr(np, function) my_func = getattr(self.MyArray, function)
if numpy_ref is True: ref = np.array(1) else: ref = self.MyArray.array()
like_args = tuple(a() if callable(a) else a for a in args) array_like = np_func(*like_args, **kwargs, like=ref)
if numpy_ref is True: assert type(array_like) is np.ndarray
np_args = tuple(a() if callable(a) else a for a in args) np_arr = np_func(*np_args, **kwargs)
# Special-case np.empty to ensure values match if function == "empty": np_arr.fill(1) array_like.fill(1)
assert_equal(array_like, np_arr) else: assert type(array_like) is self.MyArray assert array_like.function is my_func
@pytest.mark.parametrize('function, args, kwargs', _array_tests) @pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"]) @requires_array_function def test_no_array_function_like(self, function, args, kwargs, ref): self.add_method('array', self.MyNoArrayFunctionArray) self.add_method(function, self.MyNoArrayFunctionArray) np_func = getattr(np, function)
# Instantiate ref if it's the MyNoArrayFunctionArray class if ref == "MyNoArrayFunctionArray": ref = self.MyNoArrayFunctionArray.array()
like_args = tuple(a() if callable(a) else a for a in args)
with assert_raises_regex(TypeError, 'The `like` argument must be an array-like that implements'): np_func(*like_args, **kwargs, like=ref)
@pytest.mark.parametrize('numpy_ref', [True, False]) def test_array_like_fromfile(self, numpy_ref): self.add_method('array', self.MyArray) self.add_method("fromfile", self.MyArray)
if numpy_ref is True: ref = np.array(1) else: ref = self.MyArray.array()
data = np.random.random(5)
with tempfile.TemporaryDirectory() as tmpdir: fname = os.path.join(tmpdir, "testfile") data.tofile(fname)
array_like = np.fromfile(fname, like=ref) if numpy_ref is True: assert type(array_like) is np.ndarray np_res = np.fromfile(fname, like=ref) assert_equal(np_res, data) assert_equal(array_like, np_res) else: assert type(array_like) is self.MyArray assert array_like.function is self.MyArray.fromfile
@requires_array_function def test_exception_handling(self): self.add_method('array', self.MyArray, enable_value_error=True)
ref = self.MyArray.array()
with assert_raises(TypeError): # Raises the error about `value_error` being invalid first np.array(1, value_error=True, like=ref)
|