Software: Apache/2.4.41 (Ubuntu). PHP/8.0.30 uname -a: Linux apirnd 5.4.0-204-generic #224-Ubuntu SMP Thu Dec 5 13:38:28 UTC 2024 x86_64 uid=33(www-data) gid=33(www-data) groups=33(www-data) Safe-mode: OFF (not secure) /var/www/html/ai_detect/Flower_Classification_Tensorflow.js/train/ drwxr-xr-x | |
| Viewing file: Select action/file-type: const tf = require('@tensorflow/tfjs');
const kernel_size = [3, 3]
const pool_size= [2, 2]
const first_filters = 32
const second_filters = 64
const third_filters = 128
const dropout_conv = 0.3
const dropout_dense = 0.3
const model = tf.sequential();
model.add(tf.layers.conv2d({
inputShape: [96, 96, 1],
filters: first_filters,
kernelSize: kernel_size,
activation: 'relu',
}));
model.add(tf.layers.conv2d({
filters: first_filters,
kernelSize: kernel_size,
activation: 'relu',
}));
model.add(tf.layers.maxPooling2d({poolSize: pool_size}));
model.add(tf.layers.dropout({rate: dropout_conv}));
model.add(tf.layers.flatten());
model.add(tf.layers.dense({units: 256, activation: 'relu'}));
model.add(tf.layers.dropout({rate: dropout_dense}));
model.add(tf.layers.dense({units: 7, activation: 'softmax'}));
const optimizer = tf.train.adam(0.0001);
model.compile({
optimizer: optimizer,
loss: 'categoricalCrossentropy',
metrics: ['accuracy'],
});
module.exports = model;
|
:: Command execute :: | |
--[ c99shell v. 2.5 [PHP 8 Update] [24.05.2025] | Generation time: 0.0055 ]-- |