Viewing file: kvm_mmu.h (9.7 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall <c.dall@virtualopensystems.com> */
#ifndef __ARM_KVM_MMU_H__ #define __ARM_KVM_MMU_H__
#include <asm/memory.h> #include <asm/page.h>
/* * We directly use the kernel VA for the HYP, as we can directly share * the mapping (HTTBR "covers" TTBR1). */ #define kern_hyp_va(kva) (kva)
/* Contrary to arm64, there is no need to generate a PC-relative address */ #define hyp_symbol_addr(s) \ ({ \ typeof(s) *addr = &(s); \ addr; \ })
#ifndef __ASSEMBLY__
#include <linux/highmem.h> #include <asm/cacheflush.h> #include <asm/cputype.h> #include <asm/kvm_arm.h> #include <asm/kvm_hyp.h> #include <asm/pgalloc.h> #include <asm/stage2_pgtable.h>
/* Ensure compatibility with arm64 */ #define VA_BITS 32
#define kvm_phys_shift(kvm) KVM_PHYS_SHIFT #define kvm_phys_size(kvm) (1ULL << kvm_phys_shift(kvm)) #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - 1ULL) #define kvm_vttbr_baddr_mask(kvm) VTTBR_BADDR_MASK
#define stage2_pgd_size(kvm) (PTRS_PER_S2_PGD * sizeof(pgd_t))
int create_hyp_mappings(void *from, void *to, pgprot_t prot); int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, void __iomem **kaddr, void __iomem **haddr); int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, void **haddr); void free_hyp_pgds(void);
void stage2_unmap_vm(struct kvm *kvm); int kvm_alloc_stage2_pgd(struct kvm *kvm); void kvm_free_stage2_pgd(struct kvm *kvm); int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, phys_addr_t pa, unsigned long size, bool writable);
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
phys_addr_t kvm_mmu_get_httbr(void); phys_addr_t kvm_get_idmap_vector(void); int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void);
#define kvm_mk_pmd(ptep) __pmd(__pa(ptep) | PMD_TYPE_TABLE) #define kvm_mk_pud(pmdp) __pud(__pa(pmdp) | PMD_TYPE_TABLE) #define kvm_mk_pgd(pudp) ({ BUILD_BUG(); 0; })
#define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot) #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot) #define kvm_pfn_pud(pfn, prot) (__pud(0))
#define kvm_pud_pfn(pud) ({ WARN_ON(1); 0; })
#define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd) /* No support for pud hugepages */ #define kvm_pud_mkhuge(pud) ( {WARN_ON(1); pud; })
/* * The following kvm_*pud*() functions are provided strictly to allow * sharing code with arm64. They should never be called in practice. */ static inline void kvm_set_s2pud_readonly(pud_t *pud) { WARN_ON(1); }
static inline bool kvm_s2pud_readonly(pud_t *pud) { WARN_ON(1); return false; }
static inline void kvm_set_pud(pud_t *pud, pud_t new_pud) { WARN_ON(1); }
static inline pud_t kvm_s2pud_mkwrite(pud_t pud) { WARN_ON(1); return pud; }
static inline pud_t kvm_s2pud_mkexec(pud_t pud) { WARN_ON(1); return pud; }
static inline bool kvm_s2pud_exec(pud_t *pud) { WARN_ON(1); return false; }
static inline pud_t kvm_s2pud_mkyoung(pud_t pud) { BUG(); return pud; }
static inline bool kvm_s2pud_young(pud_t pud) { WARN_ON(1); return false; }
static inline pte_t kvm_s2pte_mkwrite(pte_t pte) { pte_val(pte) |= L_PTE_S2_RDWR; return pte; }
static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) { pmd_val(pmd) |= L_PMD_S2_RDWR; return pmd; }
static inline pte_t kvm_s2pte_mkexec(pte_t pte) { pte_val(pte) &= ~L_PTE_XN; return pte; }
static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) { pmd_val(pmd) &= ~PMD_SECT_XN; return pmd; }
static inline void kvm_set_s2pte_readonly(pte_t *pte) { pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY; }
static inline bool kvm_s2pte_readonly(pte_t *pte) { return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY; }
static inline bool kvm_s2pte_exec(pte_t *pte) { return !(pte_val(*pte) & L_PTE_XN); }
static inline void kvm_set_s2pmd_readonly(pmd_t *pmd) { pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY; }
static inline bool kvm_s2pmd_readonly(pmd_t *pmd) { return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY; }
static inline bool kvm_s2pmd_exec(pmd_t *pmd) { return !(pmd_val(*pmd) & PMD_SECT_XN); }
static inline bool kvm_page_empty(void *ptr) { struct page *ptr_page = virt_to_page(ptr); return page_count(ptr_page) == 1; }
#define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep) #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp) #define kvm_pud_table_empty(kvm, pudp) false
#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) #define hyp_pud_table_empty(pudp) false
struct kvm;
#define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l))
static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) { return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101; }
static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) { /* * Clean the dcache to the Point of Coherency. * * We need to do this through a kernel mapping (using the * user-space mapping has proved to be the wrong * solution). For that, we need to kmap one page at a time, * and iterate over the range. */
VM_BUG_ON(size & ~PAGE_MASK);
while (size) { void *va = kmap_atomic_pfn(pfn);
kvm_flush_dcache_to_poc(va, PAGE_SIZE);
size -= PAGE_SIZE; pfn++;
kunmap_atomic(va); } }
static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) { u32 iclsz;
/* * If we are going to insert an instruction page and the icache is * either VIPT or PIPT, there is a potential problem where the host * (or another VM) may have used the same page as this guest, and we * read incorrect data from the icache. If we're using a PIPT cache, * we can invalidate just that page, but if we are using a VIPT cache * we need to invalidate the entire icache - damn shame - as written * in the ARM ARM (DDI 0406C.b - Page B3-1393). * * VIVT caches are tagged using both the ASID and the VMID and doesn't * need any kind of flushing (DDI 0406C.b - Page B3-1392). */
VM_BUG_ON(size & ~PAGE_MASK);
if (icache_is_vivt_asid_tagged()) return;
if (!icache_is_pipt()) { /* any kind of VIPT cache */ __flush_icache_all(); return; }
/* * CTR IminLine contains Log2 of the number of words in the * cache line, so we can get the number of words as * 2 << (IminLine - 1). To get the number of bytes, we * multiply by 4 (the number of bytes in a 32-bit word), and * get 4 << (IminLine). */ iclsz = 4 << (read_cpuid(CPUID_CACHETYPE) & 0xf);
while (size) { void *va = kmap_atomic_pfn(pfn); void *end = va + PAGE_SIZE; void *addr = va;
do { write_sysreg(addr, ICIMVAU); addr += iclsz; } while (addr < end);
dsb(ishst); isb();
size -= PAGE_SIZE; pfn++;
kunmap_atomic(va); }
/* Check if we need to invalidate the BTB */ if ((read_cpuid_ext(CPUID_EXT_MMFR1) >> 28) != 4) { write_sysreg(0, BPIALLIS); dsb(ishst); isb(); } }
static inline void __kvm_flush_dcache_pte(pte_t pte) { void *va = kmap_atomic(pte_page(pte));
kvm_flush_dcache_to_poc(va, PAGE_SIZE);
kunmap_atomic(va); }
static inline void __kvm_flush_dcache_pmd(pmd_t pmd) { unsigned long size = PMD_SIZE; kvm_pfn_t pfn = pmd_pfn(pmd);
while (size) { void *va = kmap_atomic_pfn(pfn);
kvm_flush_dcache_to_poc(va, PAGE_SIZE);
pfn++; size -= PAGE_SIZE;
kunmap_atomic(va); } }
static inline void __kvm_flush_dcache_pud(pud_t pud) { }
#define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x))
void kvm_set_way_flush(struct kvm_vcpu *vcpu); void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
static inline bool __kvm_cpu_uses_extended_idmap(void) { return false; }
static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) { return PTRS_PER_PGD; }
static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, pgd_t *hyp_pgd, pgd_t *merged_hyp_pgd, unsigned long hyp_idmap_start) { }
static inline unsigned int kvm_get_vmid_bits(void) { return 8; }
/* * We are not in the kvm->srcu critical section most of the time, so we take * the SRCU read lock here. Since we copy the data from the user page, we * can immediately drop the lock again. */ static inline int kvm_read_guest_lock(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) { int srcu_idx = srcu_read_lock(&kvm->srcu); int ret = kvm_read_guest(kvm, gpa, data, len);
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret; }
static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, const void *data, unsigned long len) { int srcu_idx = srcu_read_lock(&kvm->srcu); int ret = kvm_write_guest(kvm, gpa, data, len);
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret; }
static inline void *kvm_get_hyp_vector(void) { switch(read_cpuid_part()) { #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR case ARM_CPU_PART_CORTEX_A12: case ARM_CPU_PART_CORTEX_A17: { extern char __kvm_hyp_vector_bp_inv[]; return kvm_ksym_ref(__kvm_hyp_vector_bp_inv); }
case ARM_CPU_PART_BRAHMA_B15: case ARM_CPU_PART_CORTEX_A15: { extern char __kvm_hyp_vector_ic_inv[]; return kvm_ksym_ref(__kvm_hyp_vector_ic_inv); } #endif default: { extern char __kvm_hyp_vector[]; return kvm_ksym_ref(__kvm_hyp_vector); } } }
static inline int kvm_map_vectors(void) { return 0; }
static inline int hyp_map_aux_data(void) { return 0; }
#define kvm_phys_to_vttbr(addr) (addr)
static inline void kvm_set_ipa_limit(void) {}
static __always_inline u64 kvm_get_vttbr(struct kvm *kvm) { struct kvm_vmid *vmid = &kvm->arch.vmid; u64 vmid_field, baddr;
baddr = kvm->arch.pgd_phys; vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT; return kvm_phys_to_vttbr(baddr) | vmid_field; }
#endif /* !__ASSEMBLY__ */
#endif /* __ARM_KVM_MMU_H__ */
|