Viewing file: mmu.h (3.8 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 ARM Ltd. */ #ifndef __ASM_MMU_H #define __ASM_MMU_H
#include <asm/cputype.h>
#define MMCF_AARCH32 0x1 /* mm context flag for AArch32 executables */ #define USER_ASID_BIT 48 #define USER_ASID_FLAG (UL(1) << USER_ASID_BIT) #define TTBR_ASID_MASK (UL(0xffff) << 48)
#define BP_HARDEN_EL2_SLOTS 4
#ifndef __ASSEMBLY__
typedef struct { atomic64_t id; void *vdso; unsigned long flags; } mm_context_t;
/* * This macro is only used by the TLBI code, which cannot race with an * ASID change and therefore doesn't need to reload the counter using * atomic64_read. */ #define ASID(mm) ((mm)->context.id.counter & 0xffff)
static __always_inline bool arm64_kernel_unmapped_at_el0(void) { return IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && cpus_have_const_cap(ARM64_UNMAP_KERNEL_AT_EL0); }
static inline bool arm64_kernel_use_ng_mappings(void) { bool tx1_bug;
/* What's a kpti? Use global mappings if we don't know. */ if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) return false;
/* * Note: this function is called before the CPU capabilities have * been configured, so our early mappings will be global. If we * later determine that kpti is required, then * kpti_install_ng_mappings() will make them non-global. */ if (arm64_kernel_unmapped_at_el0()) return true;
if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) return false;
/* * KASLR is enabled so we're going to be enabling kpti on non-broken * CPUs regardless of their susceptibility to Meltdown. Rather * than force everybody to go through the G -> nG dance later on, * just put down non-global mappings from the beginning. */ if (!IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) { tx1_bug = false; #ifndef MODULE } else if (!static_branch_likely(&arm64_const_caps_ready)) { extern const struct midr_range cavium_erratum_27456_cpus[];
tx1_bug = is_midr_in_range_list(read_cpuid_id(), cavium_erratum_27456_cpus); #endif } else { tx1_bug = __cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456); }
return !tx1_bug && kaslr_offset() > 0; }
typedef void (*bp_hardening_cb_t)(void);
struct bp_hardening_data { int hyp_vectors_slot; bp_hardening_cb_t fn;
/* * template_start is only used by the BHB mitigation to identify the * hyp_vectors_slot sequence. */ const char *template_start; };
#if (defined(CONFIG_HARDEN_BRANCH_PREDICTOR) || \ defined(CONFIG_HARDEN_EL2_VECTORS)) extern char __bp_harden_hyp_vecs_start[], __bp_harden_hyp_vecs_end[]; extern atomic_t arm64_el2_vector_last_slot; #endif /* CONFIG_HARDEN_BRANCH_PREDICTOR || CONFIG_HARDEN_EL2_VECTORS */
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR DECLARE_PER_CPU_READ_MOSTLY(struct bp_hardening_data, bp_hardening_data);
static inline struct bp_hardening_data *arm64_get_bp_hardening_data(void) { return this_cpu_ptr(&bp_hardening_data); }
static inline void arm64_apply_bp_hardening(void) { struct bp_hardening_data *d;
if (!cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) return;
d = arm64_get_bp_hardening_data(); if (d->fn) d->fn(); } #else static inline struct bp_hardening_data *arm64_get_bp_hardening_data(void) { return NULL; }
static inline void arm64_apply_bp_hardening(void) { } #endif /* CONFIG_HARDEN_BRANCH_PREDICTOR */
extern void arm64_memblock_init(void); extern void paging_init(void); extern void bootmem_init(void); extern void __iomem *early_io_map(phys_addr_t phys, unsigned long virt); extern void init_mem_pgprot(void); extern void create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys, unsigned long virt, phys_addr_t size, pgprot_t prot, bool page_mappings_only); extern void *fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot); extern void mark_linear_text_alias_ro(void);
#define INIT_MM_CONTEXT(name) \ .pgd = init_pg_dir,
#endif /* !__ASSEMBLY__ */ #endif
|