!C99Shell v. 2.5 [PHP 8 Update] [24.05.2025]!

Software: Apache/2.4.41 (Ubuntu). PHP/8.0.30 

uname -a: Linux apirnd 5.4.0-204-generic #224-Ubuntu SMP Thu Dec 5 13:38:28 UTC 2024 x86_64 

uid=33(www-data) gid=33(www-data) groups=33(www-data) 

Safe-mode: OFF (not secure)

/usr/local/lib/python3.8/dist-packages/tensorboard/plugins/interactive_inference/   drwxr-sr-x
Free 13.03 GB of 57.97 GB (22.47%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Self remove    Logout    


Viewing file:     interactive_inference_plugin.py (16.05 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The plugin serving the interactive inference tab."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import math
import numpy as np
import tensorflow as tf

from google.protobuf import json_format
from grpc.framework.interfaces.face.face import AbortionError
from werkzeug import wrappers

from tensorboard.backend import http_util
from tensorboard.plugins import base_plugin

from tensorboard.plugins.interactive_inference.utils import common_utils
from tensorboard.plugins.interactive_inference.utils import inference_utils
from tensorboard.plugins.interactive_inference.utils import platform_utils


# Max number of examples to scan along the `examples_path` in order to return
# statistics and sampling for features.
NUM_EXAMPLES_TO_SCAN = 50

# Max number of mutants to show per feature (i.e. num of points along x-axis).
NUM_MUTANTS = 10


class InteractiveInferencePlugin(base_plugin.TBPlugin):
  """Plugin for understanding/debugging model inference.
  """

  # This string field is used by TensorBoard to generate the paths for routes
  # provided by this plugin. It must thus be URL-friendly. This field is also
  # used to uniquely identify this plugin throughout TensorBoard. See BasePlugin
  # for details.
  plugin_name = 'whatif'
  examples = []
  updated_example_indices = set()
  sprite = None
  example_class = tf.train.Example

  # The standard name for encoded image features in TensorFlow.
  image_feature_name = 'image/encoded'

  # The width and height of the thumbnail for any images for Facets Dive.
  sprite_thumbnail_dim_px = 32

  # The vocab of inference class indices to label names for the model.
  label_vocab = []

  def __init__(self, context):
    """Constructs an interactive inference plugin for TensorBoard.

    Args:
      context: A base_plugin.TBContext instance.
    """
    self._logdir = context.logdir
    self._has_auth_group = (context.flags and
                            'authorized_groups' in context.flags and
                            context.flags.authorized_groups is not '')

  def get_plugin_apps(self):
    """Obtains a mapping between routes and handlers. Stores the logdir.

    Returns:
      A mapping between routes and handlers (functions that respond to
      requests).
    """
    return {
        '/infer': self._infer,
        '/update_example': self._update_example,
        '/examples_from_path': self._examples_from_path_handler,
        '/sprite': self._serve_sprite,
        '/duplicate_example': self._duplicate_example,
        '/delete_example': self._delete_example,
        '/infer_mutants': self._infer_mutants_handler,
        '/eligible_features': self._eligible_features_from_example_handler,
    }

  def is_active(self):
    """Determines whether this plugin is active.

    Returns:
      A boolean. Whether this plugin is active.
    """
    # TODO(jameswex): Maybe enable if config flags were specified?
    return False

  def generate_sprite(self, example_strings):
    # Generate a sprite image for the examples if the examples contain the
    # standard encoded image feature.
    feature_list = (self.examples[0].features.feature
        if self.example_class == tf.train.Example
        else self.examples[0].context.feature)
    self.sprite = (
        self.create_sprite_image(example_strings)
        if (len(self.examples) and self.image_feature_name in feature_list) else
        None)

  @wrappers.Request.application
  def _examples_from_path_handler(self, request):
    """Returns JSON of the specified examples.

    Args:
      request: A request that should contain 'examples_path' and 'max_examples'.

    Returns:
      JSON of up to max_examlpes of the examples in the path.
    """
    examples_count = int(request.args.get('max_examples'))
    examples_path = request.args.get('examples_path')
    sampling_odds = float(request.args.get('sampling_odds'))
    self.example_class = (tf.train.SequenceExample
        if request.args.get('sequence_examples') == 'true'
        else tf.train.Example)
    try:
      platform_utils.throw_if_file_access_not_allowed(examples_path,
                                                      self._logdir,
                                                      self._has_auth_group)
      example_strings = platform_utils.example_protos_from_path(
          examples_path, examples_count, parse_examples=False,
          sampling_odds=sampling_odds, example_class=self.example_class)
      self.examples = [
          self.example_class.FromString(ex) for ex in example_strings]
      self.generate_sprite(example_strings)
      json_examples = [
          json_format.MessageToJson(example) for example in self.examples
      ]
      self.updated_example_indices = set(range(len(json_examples)))
      return http_util.Respond(
          request,
          {'examples': json_examples,
           'sprite': True if self.sprite else False}, 'application/json')
    except common_utils.InvalidUserInputError as e:
      return http_util.Respond(request, {'error': e.message},
                               'application/json', code=400)

  @wrappers.Request.application
  def _serve_sprite(self, request):
    return http_util.Respond(request, self.sprite, 'image/png')

  @wrappers.Request.application
  def _update_example(self, request):
    """Updates the specified example.

    Args:
      request: A request that should contain 'index' and 'example'.

    Returns:
      An empty response.
    """
    if request.method != 'POST':
      return http_util.Respond(request, {'error': 'invalid non-POST request'},
                               'application/json', code=405)
    example_json = request.form['example']
    index = int(request.form['index'])
    if index >= len(self.examples):
      return http_util.Respond(request, {'error': 'invalid index provided'},
                               'application/json', code=400)
    new_example = self.example_class()
    json_format.Parse(example_json, new_example)
    self.examples[index] = new_example
    self.updated_example_indices.add(index)
    self.generate_sprite([ex.SerializeToString() for ex in self.examples])
    return http_util.Respond(request, {}, 'application/json')

  @wrappers.Request.application
  def _duplicate_example(self, request):
    """Duplicates the specified example.

    Args:
      request: A request that should contain 'index'.

    Returns:
      An empty response.
    """
    index = int(request.args.get('index'))
    if index >= len(self.examples):
      return http_util.Respond(request, {'error': 'invalid index provided'},
                               'application/json', code=400)
    new_example = self.example_class()
    new_example.CopyFrom(self.examples[index])
    self.examples.append(new_example)
    self.updated_example_indices.add(len(self.examples) - 1)
    self.generate_sprite([ex.SerializeToString() for ex in self.examples])
    return http_util.Respond(request, {}, 'application/json')

  @wrappers.Request.application
  def _delete_example(self, request):
    """Deletes the specified example.

    Args:
      request: A request that should contain 'index'.

    Returns:
      An empty response.
    """
    index = int(request.args.get('index'))
    if index >= len(self.examples):
      return http_util.Respond(request, {'error': 'invalid index provided'},
                               'application/json', code=400)
    del self.examples[index]
    self.updated_example_indices = set([
        i if i < index else i - 1 for i in self.updated_example_indices])
    self.generate_sprite([ex.SerializeToString() for ex in self.examples])
    return http_util.Respond(request, {}, 'application/json')

  @wrappers.Request.application
  def _infer(self, request):
    """Returns JSON for the `vz-line-chart`s for a feature.

    Args:
      request: A request that should contain 'inference_address', 'model_name',
        'model_type, 'model_version', 'model_signature' and 'label_vocab_path'.

    Returns:
      A list of JSON objects, one for each chart.
    """
    vocab_path = request.args.get('label_vocab_path')
    if vocab_path:
      try:
        with tf.gfile.GFile(vocab_path, 'r') as f:
          label_vocab = [line.rstrip('\n') for line in f]
      except tf.errors.NotFoundError as err:
        tf.logging.error('error reading vocab file: %s', err)
        label_vocab = []
    else:
      label_vocab = []

    try:
      if request.method != 'GET':
        tf.logging.error('%s requests are forbidden.', request.method)
        return http_util.Respond(request, {'error': 'invalid non-GET request'},
                                 'application/json', code=405)

      serving_bundle = inference_utils.ServingBundle(
          request.args.get('inference_address'),
          request.args.get('model_name'), request.args.get('model_type'),
          request.args.get('model_version'),
          request.args.get('model_signature'))
      indices_to_infer = sorted(self.updated_example_indices)
      examples_to_infer = [self.examples[index] for index in indices_to_infer]

      # Get inference results proto and combine with indices of inferred
      # examples and respond with this data as json.
      inference_result_proto = platform_utils.call_servo(
          examples_to_infer, serving_bundle)
      new_inferences = inference_utils.wrap_inference_results(
          inference_result_proto)
      infer_json = json_format.MessageToJson(
          new_inferences, including_default_value_fields=True)
      infer_obj = json.loads(infer_json)
      resp = {'indices': indices_to_infer, 'results': infer_obj}
      self.updated_example_indices = set()
      return http_util.Respond(request, {'inferences': json.dumps(resp),
                                         'vocab': json.dumps(label_vocab)},
                               'application/json')
    except common_utils.InvalidUserInputError as e:
      return http_util.Respond(request, {'error': e.message},
                               'application/json', code=400)
    except AbortionError as e:
      return http_util.Respond(request, {'error': e.details},
                               'application/json', code=400)

  def create_sprite_image(self, examples):
    """Returns an encoded sprite image for use in Facets Dive.

    Args:
      examples: A list of serialized example protos to get images for.

    Returns:
      An encoded PNG.
    """

    def generate_image_from_thubnails(thumbnails, thumbnail_dims):
      """Generates a sprite atlas image from a set of thumbnails."""
      num_thumbnails = tf.shape(thumbnails)[0].eval()
      images_per_row = int(math.ceil(math.sqrt(num_thumbnails)))
      thumb_height = thumbnail_dims[0]
      thumb_width = thumbnail_dims[1]
      master_height = images_per_row * thumb_height
      master_width = images_per_row * thumb_width
      num_channels = 3
      master = np.zeros([master_height, master_width, num_channels])
      for idx, image in enumerate(thumbnails.eval()):
        left_idx = idx % images_per_row
        top_idx = int(math.floor(idx / images_per_row))
        left_start = left_idx * thumb_width
        left_end = left_start + thumb_width
        top_start = top_idx * thumb_height
        top_end = top_start + thumb_height
        master[top_start:top_end, left_start:left_end, :] = image
      return tf.image.encode_png(master)

    with tf.Session():
      keys_to_features = {
          self.image_feature_name:
              tf.FixedLenFeature((), tf.string, default_value=''),
      }
      parsed = tf.parse_example(examples, keys_to_features)
      images = tf.zeros([1, 1, 1, 1], tf.float32)
      i = tf.constant(0)
      thumbnail_dims = (self.sprite_thumbnail_dim_px,
                        self.sprite_thumbnail_dim_px)
      num_examples = tf.constant(len(examples))
      encoded_images = parsed[self.image_feature_name]

      # Loop over all examples, decoding the image feature value, resizing
      # and appending to a list of all images.
      def loop_body(i, encoded_images, images):
        encoded_image = encoded_images[i]
        image = tf.image.decode_jpeg(encoded_image, channels=3)
        resized_image = tf.image.resize_images(image, thumbnail_dims)
        expanded_image = tf.expand_dims(resized_image, 0)
        images = tf.cond(
            tf.equal(i, 0), lambda: expanded_image,
            lambda: tf.concat([images, expanded_image], 0))
        return i + 1, encoded_images, images

      loop_out = tf.while_loop(
          lambda i, encoded_images, images: tf.less(i, num_examples),
          loop_body, [i, encoded_images, images],
          shape_invariants=[
              i.get_shape(),
              encoded_images.get_shape(),
              tf.TensorShape(None)
          ])

      # Create the single sprite atlas image from these thumbnails.
      sprite = generate_image_from_thubnails(loop_out[2], thumbnail_dims)
      return sprite.eval()

  @wrappers.Request.application
  def _eligible_features_from_example_handler(self, request):
    """Returns a list of JSON objects for each feature in the example.

    Args:
      request: A request for features.

    Returns:
      A list with a JSON object for each feature.
      Numeric features are represented as {name: observedMin: observedMax:}.
      Categorical features are repesented as {name: samples:[]}.
    """
    features_dict = (
        inference_utils.get_numeric_features_to_observed_range(
            self.examples[0: NUM_EXAMPLES_TO_SCAN]))

    features_dict.update(
        inference_utils.get_categorical_features_to_sampling(
            self.examples[0: NUM_EXAMPLES_TO_SCAN], NUM_MUTANTS))

    # Massage the features_dict into a sorted list before returning because
    # Polymer dom-repeat needs a list.
    features_list = []
    for k, v in sorted(features_dict.items()):
      v['name'] = k
      features_list.append(v)

    return http_util.Respond(request, features_list, 'application/json')

  @wrappers.Request.application
  def _infer_mutants_handler(self, request):
    """Returns JSON for the `vz-line-chart`s for a feature.

    Args:
      request: A request that should contain 'feature_name', 'example_index',
         'inference_address', 'model_name', 'model_type', 'model_version', and
         'model_signature'.

    Returns:
      A list of JSON objects, one for each chart.
    """
    try:
      if request.method != 'GET':
        tf.logging.error('%s requests are forbidden.', request.method)
        return http_util.Respond(request, {'error': 'invalid non-GET request'},
                                 'application/json', code=405)

      example_index = int(request.args.get('example_index', '0'))
      feature_name = request.args.get('feature_name')
      example = self.examples[example_index]
      serving_bundle = inference_utils.ServingBundle(
          request.args.get('inference_address'), request.args.get('model_name'),
          request.args.get('model_type'),
          request.args.get('model_version'),
          request.args.get('model_signature'))
      viz_params = inference_utils.VizParams(
          request.args.get('x_min'), request.args.get('x_max'),
          self.examples[0:NUM_EXAMPLES_TO_SCAN], NUM_MUTANTS,
          request.args.get('feature_index_pattern'))
      json_mapping = inference_utils.mutant_charts_for_feature(
          example, feature_name, serving_bundle, viz_params)
      return http_util.Respond(request, json_mapping, 'application/json')
    except common_utils.InvalidUserInputError as e:
      return http_util.Respond(request, {'error': e.message},
                               'application/json', code=400)

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 2.5 [PHP 8 Update] [24.05.2025] | Generation time: 0.0149 ]--