Viewing file: summary.py (2.8 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains summaries related to laying out the custom scalars dashboard. """
from __future__ import absolute_import from __future__ import division from __future__ import print_function
import tensorflow as tf
from tensorboard.plugins.custom_scalar import layout_pb2 from tensorboard.plugins.custom_scalar import metadata
def op(scalars_layout, collections=None): """Creates a summary that contains a layout.
When users navigate to the custom scalars dashboard, they will see a layout based on the proto provided to this function.
Args: scalars_layout: The scalars_layout_pb2.Layout proto that specifies the layout. collections: Optional list of graph collections keys. The new summary op is added to these collections. Defaults to `[Graph Keys.SUMMARIES]`.
Returns: A tensor summary op that writes the layout to disk. """ assert isinstance(scalars_layout, layout_pb2.Layout) return tf.summary.tensor_summary(name=metadata.CONFIG_SUMMARY_TAG, tensor=tf.constant( scalars_layout.SerializeToString(), dtype=tf.string), collections=collections, summary_metadata=_create_summary_metadata())
def pb(scalars_layout): """Creates a summary that contains a layout.
When users navigate to the custom scalars dashboard, they will see a layout based on the proto provided to this function.
Args: scalars_layout: The scalars_layout_pb2.Layout proto that specifies the layout.
Returns: A summary proto containing the layout. """ assert isinstance(scalars_layout, layout_pb2.Layout) tensor = tf.make_tensor_proto( scalars_layout.SerializeToString(), dtype=tf.string) summary = tf.Summary() summary.value.add(tag=metadata.CONFIG_SUMMARY_TAG, metadata=_create_summary_metadata(), tensor=tensor) return summary
def _create_summary_metadata(): return tf.SummaryMetadata( plugin_data=tf.SummaryMetadata.PluginData( plugin_name=metadata.PLUGIN_NAME))
|