Viewing file: resnet_common.py (21.72 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
"""ResNet, ResNetV2, and ResNeXt models for Keras.
# Reference papers
- [Deep Residual Learning for Image Recognition] (https://arxiv.org/abs/1512.03385) (CVPR 2016 Best Paper Award) - [Identity Mappings in Deep Residual Networks] (https://arxiv.org/abs/1603.05027) (ECCV 2016) - [Aggregated Residual Transformations for Deep Neural Networks] (https://arxiv.org/abs/1611.05431) (CVPR 2017)
# Reference implementations
- [TensorNets] (https://github.com/taehoonlee/tensornets/blob/master/tensornets/resnets.py) - [Caffe ResNet] (https://github.com/KaimingHe/deep-residual-networks/tree/master/prototxt) - [Torch ResNetV2] (https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua) - [Torch ResNeXt] (https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua)
""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
import os
from . import get_submodules_from_kwargs from .imagenet_utils import _obtain_input_shape
backend = None layers = None models = None keras_utils = None
BASE_WEIGHTS_PATH = ( 'https://github.com/keras-team/keras-applications/' 'releases/download/resnet/') WEIGHTS_HASHES = { 'resnet50': ('2cb95161c43110f7111970584f804107', '4d473c1dd8becc155b73f8504c6f6626'), 'resnet101': ('f1aeb4b969a6efcfb50fad2f0c20cfc5', '88cf7a10940856eca736dc7b7e228a21'), 'resnet152': ('100835be76be38e30d865e96f2aaae62', 'ee4c566cf9a93f14d82f913c2dc6dd0c'), 'resnet50v2': ('3ef43a0b657b3be2300d5770ece849e0', 'fac2f116257151a9d068a22e544a4917'), 'resnet101v2': ('6343647c601c52e1368623803854d971', 'c0ed64b8031c3730f411d2eb4eea35b5'), 'resnet152v2': ('a49b44d1979771252814e80f8ec446f9', 'ed17cf2e0169df9d443503ef94b23b33'), 'resnext50': ('67a5b30d522ed92f75a1f16eef299d1a', '62527c363bdd9ec598bed41947b379fc'), 'resnext101': ('34fb605428fcc7aa4d62f44404c11509', '0f678c91647380debd923963594981b3') }
def block1(x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None): """A residual block.
# Arguments x: input tensor. filters: integer, filters of the bottleneck layer. kernel_size: default 3, kernel size of the bottleneck layer. stride: default 1, stride of the first layer. conv_shortcut: default True, use convolution shortcut if True, otherwise identity shortcut. name: string, block label.
# Returns Output tensor for the residual block. """ bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
if conv_shortcut is True: shortcut = layers.Conv2D(4 * filters, 1, strides=stride, name=name + '_0_conv')(x) shortcut = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_0_bn')(shortcut) else: shortcut = x
x = layers.Conv2D(filters, 1, strides=stride, name=name + '_1_conv')(x) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')(x) x = layers.Activation('relu', name=name + '_1_relu')(x)
x = layers.Conv2D(filters, kernel_size, padding='SAME', name=name + '_2_conv')(x) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_2_bn')(x) x = layers.Activation('relu', name=name + '_2_relu')(x)
x = layers.Conv2D(4 * filters, 1, name=name + '_3_conv')(x) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_3_bn')(x)
x = layers.Add(name=name + '_add')([shortcut, x]) x = layers.Activation('relu', name=name + '_out')(x) return x
def stack1(x, filters, blocks, stride1=2, name=None): """A set of stacked residual blocks.
# Arguments x: input tensor. filters: integer, filters of the bottleneck layer in a block. blocks: integer, blocks in the stacked blocks. stride1: default 2, stride of the first layer in the first block. name: string, stack label.
# Returns Output tensor for the stacked blocks. """ x = block1(x, filters, stride=stride1, name=name + '_block1') for i in range(2, blocks + 1): x = block1(x, filters, conv_shortcut=False, name=name + '_block' + str(i)) return x
def block2(x, filters, kernel_size=3, stride=1, conv_shortcut=False, name=None): """A residual block.
# Arguments x: input tensor. filters: integer, filters of the bottleneck layer. kernel_size: default 3, kernel size of the bottleneck layer. stride: default 1, stride of the first layer. conv_shortcut: default False, use convolution shortcut if True, otherwise identity shortcut. name: string, block label.
# Returns Output tensor for the residual block. """ bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
preact = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_preact_bn')(x) preact = layers.Activation('relu', name=name + '_preact_relu')(preact)
if conv_shortcut is True: shortcut = layers.Conv2D(4 * filters, 1, strides=stride, name=name + '_0_conv')(preact) else: shortcut = layers.MaxPooling2D(1, strides=stride)(x) if stride > 1 else x
x = layers.Conv2D(filters, 1, strides=1, use_bias=False, name=name + '_1_conv')(preact) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')(x) x = layers.Activation('relu', name=name + '_1_relu')(x)
x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + '_2_pad')(x) x = layers.Conv2D(filters, kernel_size, strides=stride, use_bias=False, name=name + '_2_conv')(x) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_2_bn')(x) x = layers.Activation('relu', name=name + '_2_relu')(x)
x = layers.Conv2D(4 * filters, 1, name=name + '_3_conv')(x) x = layers.Add(name=name + '_out')([shortcut, x]) return x
def stack2(x, filters, blocks, stride1=2, name=None): """A set of stacked residual blocks.
# Arguments x: input tensor. filters: integer, filters of the bottleneck layer in a block. blocks: integer, blocks in the stacked blocks. stride1: default 2, stride of the first layer in the first block. name: string, stack label.
# Returns Output tensor for the stacked blocks. """ x = block2(x, filters, conv_shortcut=True, name=name + '_block1') for i in range(2, blocks): x = block2(x, filters, name=name + '_block' + str(i)) x = block2(x, filters, stride=stride1, name=name + '_block' + str(blocks)) return x
def block3(x, filters, kernel_size=3, stride=1, groups=32, conv_shortcut=True, name=None): """A residual block.
# Arguments x: input tensor. filters: integer, filters of the bottleneck layer. kernel_size: default 3, kernel size of the bottleneck layer. stride: default 1, stride of the first layer. groups: default 32, group size for grouped convolution. conv_shortcut: default True, use convolution shortcut if True, otherwise identity shortcut. name: string, block label.
# Returns Output tensor for the residual block. """ bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
if conv_shortcut is True: shortcut = layers.Conv2D((64 // groups) * filters, 1, strides=stride, use_bias=False, name=name + '_0_conv')(x) shortcut = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_0_bn')(shortcut) else: shortcut = x
x = layers.Conv2D(filters, 1, use_bias=False, name=name + '_1_conv')(x) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')(x) x = layers.Activation('relu', name=name + '_1_relu')(x)
c = filters // groups x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + '_2_pad')(x) x = layers.DepthwiseConv2D(kernel_size, strides=stride, depth_multiplier=c, use_bias=False, name=name + '_2_conv')(x) x_shape = backend.int_shape(x)[1:-1] x = layers.Reshape(x_shape + (groups, c, c))(x) output_shape = x_shape + (groups, c) if backend.backend() == 'theano' else None x = layers.Lambda(lambda x: sum([x[:, :, :, :, i] for i in range(c)]), output_shape=output_shape, name=name + '_2_reduce')(x) x = layers.Reshape(x_shape + (filters,))(x) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_2_bn')(x) x = layers.Activation('relu', name=name + '_2_relu')(x)
x = layers.Conv2D((64 // groups) * filters, 1, use_bias=False, name=name + '_3_conv')(x) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_3_bn')(x)
x = layers.Add(name=name + '_add')([shortcut, x]) x = layers.Activation('relu', name=name + '_out')(x) return x
def stack3(x, filters, blocks, stride1=2, groups=32, name=None): """A set of stacked residual blocks.
# Arguments x: input tensor. filters: integer, filters of the bottleneck layer in a block. blocks: integer, blocks in the stacked blocks. stride1: default 2, stride of the first layer in the first block. groups: default 32, group size for grouped convolution. name: string, stack label.
# Returns Output tensor for the stacked blocks. """ x = block3(x, filters, stride=stride1, groups=groups, name=name + '_block1') for i in range(2, blocks + 1): x = block3(x, filters, groups=groups, conv_shortcut=False, name=name + '_block' + str(i)) return x
def ResNet(stack_fn, preact, use_bias, model_name='resnet', include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): """Instantiates the ResNet, ResNetV2, and ResNeXt architecture.
Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`.
# Arguments stack_fn: a function that returns output tensor for the stacked residual blocks. preact: whether to use pre-activation or not (True for ResNetV2, False for ResNet and ResNeXt). use_bias: whether to use biases for convolutional layers or not (True for ResNet and ResNetV2, False for ResNeXt). model_name: string, model name. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified.
# Returns A Keras model instance.
# Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. """ global backend, layers, models, keras_utils backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.')
if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000')
# Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights)
if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor
bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)), name='conv1_pad')(img_input) x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name='conv1_conv')(x)
if preact is False: x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='conv1_bn')(x) x = layers.Activation('relu', name='conv1_relu')(x)
x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name='pool1_pad')(x) x = layers.MaxPooling2D(3, strides=2, name='pool1_pool')(x)
x = stack_fn(x)
if preact is True: x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='post_bn')(x) x = layers.Activation('relu', name='post_relu')(x)
if include_top: x = layers.GlobalAveragePooling2D(name='avg_pool')(x) x = layers.Dense(classes, activation='softmax', name='probs')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D(name='avg_pool')(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D(name='max_pool')(x)
# Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = keras_utils.get_source_inputs(input_tensor) else: inputs = img_input
# Create model. model = models.Model(inputs, x, name=model_name)
# Load weights. if (weights == 'imagenet') and (model_name in WEIGHTS_HASHES): if include_top: file_name = model_name + '_weights_tf_dim_ordering_tf_kernels.h5' file_hash = WEIGHTS_HASHES[model_name][0] else: file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_notop.h5' file_hash = WEIGHTS_HASHES[model_name][1] weights_path = keras_utils.get_file(file_name, BASE_WEIGHTS_PATH + file_name, cache_subdir='models', file_hash=file_hash) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights)
return model
def ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): def stack_fn(x): x = stack1(x, 64, 3, stride1=1, name='conv2') x = stack1(x, 128, 4, name='conv3') x = stack1(x, 256, 6, name='conv4') x = stack1(x, 512, 3, name='conv5') return x return ResNet(stack_fn, False, True, 'resnet50', include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
def ResNet101(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): def stack_fn(x): x = stack1(x, 64, 3, stride1=1, name='conv2') x = stack1(x, 128, 4, name='conv3') x = stack1(x, 256, 23, name='conv4') x = stack1(x, 512, 3, name='conv5') return x return ResNet(stack_fn, False, True, 'resnet101', include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
def ResNet152(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): def stack_fn(x): x = stack1(x, 64, 3, stride1=1, name='conv2') x = stack1(x, 128, 8, name='conv3') x = stack1(x, 256, 36, name='conv4') x = stack1(x, 512, 3, name='conv5') return x return ResNet(stack_fn, False, True, 'resnet152', include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
def ResNet50V2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): def stack_fn(x): x = stack2(x, 64, 3, name='conv2') x = stack2(x, 128, 4, name='conv3') x = stack2(x, 256, 6, name='conv4') x = stack2(x, 512, 3, stride1=1, name='conv5') return x return ResNet(stack_fn, True, True, 'resnet50v2', include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
def ResNet101V2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): def stack_fn(x): x = stack2(x, 64, 3, name='conv2') x = stack2(x, 128, 4, name='conv3') x = stack2(x, 256, 23, name='conv4') x = stack2(x, 512, 3, stride1=1, name='conv5') return x return ResNet(stack_fn, True, True, 'resnet101v2', include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
def ResNet152V2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): def stack_fn(x): x = stack2(x, 64, 3, name='conv2') x = stack2(x, 128, 8, name='conv3') x = stack2(x, 256, 36, name='conv4') x = stack2(x, 512, 3, stride1=1, name='conv5') return x return ResNet(stack_fn, True, True, 'resnet152v2', include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
def ResNeXt50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): def stack_fn(x): x = stack3(x, 128, 3, stride1=1, name='conv2') x = stack3(x, 256, 4, name='conv3') x = stack3(x, 512, 6, name='conv4') x = stack3(x, 1024, 3, name='conv5') return x return ResNet(stack_fn, False, False, 'resnext50', include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
def ResNeXt101(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): def stack_fn(x): x = stack3(x, 128, 3, stride1=1, name='conv2') x = stack3(x, 256, 4, name='conv3') x = stack3(x, 512, 23, name='conv4') x = stack3(x, 1024, 3, name='conv5') return x return ResNet(stack_fn, False, False, 'resnext101', include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs)
setattr(ResNet50, '__doc__', ResNet.__doc__) setattr(ResNet101, '__doc__', ResNet.__doc__) setattr(ResNet152, '__doc__', ResNet.__doc__) setattr(ResNet50V2, '__doc__', ResNet.__doc__) setattr(ResNet101V2, '__doc__', ResNet.__doc__) setattr(ResNet152V2, '__doc__', ResNet.__doc__) setattr(ResNeXt50, '__doc__', ResNet.__doc__) setattr(ResNeXt101, '__doc__', ResNet.__doc__)
|