Viewing file: resnet.py (1.02 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
"""ResNet models for Keras.
# Reference paper
- [Deep Residual Learning for Image Recognition] (https://arxiv.org/abs/1512.03385) (CVPR 2016 Best Paper Award)
# Reference implementations
- [TensorNets] (https://github.com/taehoonlee/tensornets/blob/master/tensornets/resnets.py) - [Caffe ResNet] (https://github.com/KaimingHe/deep-residual-networks/tree/master/prototxt)
""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
from . import imagenet_utils from .imagenet_utils import decode_predictions from .resnet_common import ResNet50 from .resnet_common import ResNet101 from .resnet_common import ResNet152
def preprocess_input(x, **kwargs): """Preprocesses a numpy array encoding a batch of images.
# Arguments x: a 4D numpy array consists of RGB values within [0, 255]. data_format: data format of the image tensor.
# Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='caffe', **kwargs)
|