Viewing file: __init__.py (1.8 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
"""Enables dynamic setting of underlying Keras module. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function
_KERAS_BACKEND = None _KERAS_LAYERS = None _KERAS_MODELS = None _KERAS_UTILS = None
def get_submodules_from_kwargs(kwargs): backend = kwargs.get('backend', _KERAS_BACKEND) layers = kwargs.get('layers', _KERAS_LAYERS) models = kwargs.get('models', _KERAS_MODELS) utils = kwargs.get('utils', _KERAS_UTILS) for key in kwargs.keys(): if key not in ['backend', 'layers', 'models', 'utils']: raise TypeError('Invalid keyword argument: %s', key) return backend, layers, models, utils
def correct_pad(backend, inputs, kernel_size): """Returns a tuple for zero-padding for 2D convolution with downsampling.
# Arguments input_size: An integer or tuple/list of 2 integers. kernel_size: An integer or tuple/list of 2 integers.
# Returns A tuple. """ img_dim = 2 if backend.image_data_format() == 'channels_first' else 1 input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size)
if input_size[0] is None: adjust = (1, 1) else: adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
return ((correct[0] - adjust[0], correct[0]), (correct[1] - adjust[1], correct[1]))
__version__ = '1.0.8'
from . import vgg16 from . import vgg19 from . import resnet50 from . import inception_v3 from . import inception_resnet_v2 from . import xception from . import mobilenet from . import mobilenet_v2 from . import densenet from . import nasnet from . import resnet from . import resnet_v2 from . import resnext
|