Viewing file: test_h5t.py (6.43 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
# This file is part of h5py, a Python interface to the HDF5 library. # # http://www.h5py.org # # Copyright 2008-2013 Andrew Collette and contributors # # License: Standard 3-clause BSD; see "license.txt" for full license terms # and contributor agreement.
import numpy as np
import h5py from h5py import h5t
from .common import TestCase, ut
class TestCompound(ut.TestCase):
""" Feature: Compound types can be created from Python dtypes """
def test_ref(self): """ Reference types are correctly stored in compound types (issue 144) """ dt = np.dtype([('a', h5py.ref_dtype), ('b', '<f4')]) tid = h5t.py_create(dt, logical=True) t1, t2 = tid.get_member_type(0), tid.get_member_type(1) self.assertEqual(t1, h5t.STD_REF_OBJ) self.assertEqual(t2, h5t.IEEE_F32LE) self.assertEqual(tid.get_member_offset(0), 0) self.assertEqual(tid.get_member_offset(1), h5t.STD_REF_OBJ.get_size())
def test_out_of_order_offsets(self): size = 20 type_dict = { 'names': ['f1', 'f2', 'f3'], 'formats': ['<f4', '<i4', '<f8'], 'offsets': [0, 16, 8] }
expected_dtype = np.dtype(type_dict)
tid = h5t.create(h5t.COMPOUND, size) for name, offset, dt in zip( type_dict["names"], type_dict["offsets"], type_dict["formats"] ): tid.insert( name.encode("utf8") if isinstance(name, str) else name, offset, h5t.py_create(dt) )
self.assertEqual(tid.dtype, expected_dtype) self.assertEqual(tid.dtype.itemsize, size)
class TestTypeFloatID(TestCase): """Test TypeFloatID."""
def test_custom_float_promotion(self): """Custom floats are correctly promoted to standard floats on read."""
# This test uses the low-level API, so we need names as byte strings test_filename = self.mktemp().encode() dataset = b'DS1' dataset2 = b'DS2' dataset3 = b'DS3' dataset4 = b'DS4' dataset5 = b'DS5'
dims = (4, 7)
wdata = np.array([[-1.50066626e-09, 1.40062184e-09, 1.81216819e-10, 4.01087163e-10, 4.27917257e-10, -7.04858394e-11, 5.74800652e-10], [-1.50066626e-09, 4.86579665e-10, 3.42879503e-10, 5.12045517e-10, 5.10226528e-10, 2.24190444e-10, 3.93356459e-10], [-1.50066626e-09, 5.24778443e-10, 8.19454726e-10, 1.28966349e-09, 1.68483894e-10, 5.71276360e-11, -1.08684617e-10], [-1.50066626e-09, -1.08343556e-10, -1.58934199e-10, 8.52196536e-10, 6.18456397e-10, 6.16637408e-10, 1.31694833e-09]], dtype=np.float32)
wdata2 = np.array([[-1.50066626e-09, 5.63886715e-10, -8.74251782e-11, 1.32558853e-10, 1.59161573e-10, 2.29420039e-10, -7.24185156e-11], [-1.50066626e-09, 1.87810656e-10, 7.74889486e-10, 3.95630195e-10, 9.42236511e-10, 8.38554115e-10, -8.71978045e-11], [-1.50066626e-09, 6.20275387e-10, 7.34871719e-10, 6.64840627e-10, 2.64662958e-10, 1.05319486e-09, 1.68256520e-10], [-1.50066626e-09, 1.67347025e-10, 5.12045517e-10, 3.36513040e-10, 1.02545528e-10, 1.28784450e-09, 4.06089384e-10]], dtype=np.float32)
# Create a new file using the default properties. fid = h5py.h5f.create(test_filename) # Create the dataspace. No maximum size parameter needed. space = h5py.h5s.create_simple(dims)
# create a custom type with larger bias mytype = h5t.IEEE_F16LE.copy() mytype.set_fields(14, 9, 5, 0, 9) mytype.set_size(2) mytype.set_ebias(53) mytype.lock()
dset = h5py.h5d.create(fid, dataset, mytype, space) dset.write(h5py.h5s.ALL, h5py.h5s.ALL, wdata)
del dset
# create a custom type with larger exponent mytype2 = h5t.IEEE_F16LE.copy() mytype2.set_fields(15, 9, 6, 0, 9) mytype2.set_size(2) mytype2.set_ebias(53) mytype2.lock()
dset = h5py.h5d.create(fid, dataset2, mytype2, space) dset.write(h5py.h5s.ALL, h5py.h5s.ALL, wdata2)
del dset
# create a custom type which reimplements 16-bit floats mytype3 = h5t.IEEE_F16LE.copy() mytype3.set_fields(15, 10, 5, 0, 10) mytype3.set_size(2) mytype3.set_ebias(15) mytype3.lock()
dset = h5py.h5d.create(fid, dataset3, mytype3, space) dset.write(h5py.h5s.ALL, h5py.h5s.ALL, wdata2)
del dset
# create a custom type with larger bias mytype4 = h5t.IEEE_F16LE.copy() mytype4.set_fields(15, 10, 5, 0, 10) mytype4.set_size(2) mytype4.set_ebias(258) mytype4.lock()
dset = h5py.h5d.create(fid, dataset4, mytype4, space) dset.write(h5py.h5s.ALL, h5py.h5s.ALL, wdata2)
del dset
# create a dataset with long doubles dset = h5py.h5d.create(fid, dataset5, h5t.NATIVE_LDOUBLE, space) dset.write(h5py.h5s.ALL, h5py.h5s.ALL, wdata2)
# Explicitly close and release resources. del space del dset del fid
f = h5py.File(test_filename, 'r')
# ebias promotion to float32 values = f[dataset][:] np.testing.assert_array_equal(values, wdata) self.assertEqual(values.dtype, np.dtype('<f4'))
# esize promotion to float32 values = f[dataset2][:] np.testing.assert_array_equal(values, wdata2) self.assertEqual(values.dtype, np.dtype('<f4'))
# regular half floats dset = f[dataset3] try: self.assertEqual(dset.dtype, np.dtype('<f2')) except AttributeError: self.assertEqual(dset.dtype, np.dtype('<f4'))
# ebias promotion to float64 dset = f[dataset4] self.assertEqual(dset.dtype, np.dtype('<f8'))
# long double floats dset = f[dataset5] self.assertEqual(dset.dtype, np.longdouble)
|