Viewing file: test_dataset_getitem.py (17.33 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
# This file is part of h5py, a Python interface to the HDF5 library. # # http://www.h5py.org # # Copyright 2008-2013 Andrew Collette and contributors # # License: Standard 3-clause BSD; see "license.txt" for full license terms # and contributor agreement.
""" Tests the h5py.Dataset.__getitem__ method.
This module does not specifically test type conversion. The "type" axis therefore only tests objects which interact with the slicing system in unreliable ways; for example, compound and array types.
See test_dataset_getitem_types for type-conversion tests.
Tests are organized into TestCases by dataset shape and type. Test methods vary by slicing arg type.
1. Dataset shape: Empty Scalar 1D 3D
2. Type: Float Compound Array
3. Slicing arg types: Ellipsis Empty tuple Regular slice MultiBlockSlice Indexing Index list Boolean mask Field names """
import sys
import numpy as np import h5py
from .common import ut, TestCase
class TestEmpty(TestCase):
def setUp(self): TestCase.setUp(self) sid = h5py.h5s.create(h5py.h5s.NULL) tid = h5py.h5t.C_S1.copy() tid.set_size(10) dsid = h5py.h5d.create(self.f.id, b'x', tid, sid) self.dset = h5py.Dataset(dsid) self.empty_obj = h5py.Empty(np.dtype("S10"))
def test_ndim(self): """ Verify number of dimensions """ self.assertEqual(self.dset.ndim, 0)
def test_shape(self): """ Verify shape """ self.assertEqual(self.dset.shape, None)
def test_size(self): """ Verify shape """ self.assertEqual(self.dset.size, None)
def test_nbytes(self): """ Verify nbytes """ self.assertEqual(self.dset.nbytes, 0)
def test_ellipsis(self): self.assertEqual(self.dset[...], self.empty_obj)
def test_tuple(self): self.assertEqual(self.dset[()], self.empty_obj)
def test_slice(self): """ slice -> ValueError """ with self.assertRaises(ValueError): self.dset[0:4]
def test_multi_block_slice(self): """ MultiBlockSlice -> ValueError """ with self.assertRaises(ValueError): self.dset[h5py.MultiBlockSlice()]
def test_index(self): """ index -> ValueError """ with self.assertRaises(ValueError): self.dset[0]
def test_indexlist(self): """ index list -> ValueError """ with self.assertRaises(ValueError): self.dset[[1,2,5]]
def test_mask(self): """ mask -> ValueError """ mask = np.array(True, dtype='bool') with self.assertRaises(ValueError): self.dset[mask]
def test_fieldnames(self): """ field name -> ValueError """ with self.assertRaises(ValueError): self.dset['field']
class TestScalarFloat(TestCase):
def setUp(self): TestCase.setUp(self) self.data = np.array(42.5, dtype='f') self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self): """ Verify number of dimensions """ self.assertEqual(self.dset.ndim, 0)
def test_size(self): """ Verify size """ self.assertEqual(self.dset.size, 1)
def test_nbytes(self): """ Verify nbytes """ self.assertEqual(self.dset.nbytes, self.data.dtype.itemsize) # not sure if 'f' is always alias for 'f4'
def test_shape(self): """ Verify shape """ self.assertEqual(self.dset.shape, tuple())
def test_ellipsis(self): """ Ellipsis -> scalar ndarray """ out = self.dset[...] self.assertArrayEqual(out, self.data)
def test_tuple(self): """ () -> bare item """ out = self.dset[()] self.assertArrayEqual(out, self.data.item())
def test_slice(self): """ slice -> ValueError """ with self.assertRaises(ValueError): self.dset[0:4]
def test_multi_block_slice(self): """ MultiBlockSlice -> ValueError """ with self.assertRaises(ValueError): self.dset[h5py.MultiBlockSlice()]
def test_index(self): """ index -> ValueError """ with self.assertRaises(ValueError): self.dset[0]
# FIXME: NumPy has IndexError instead def test_indexlist(self): """ index list -> ValueError """ with self.assertRaises(ValueError): self.dset[[1,2,5]]
# FIXME: NumPy permits this def test_mask(self): """ mask -> ValueError """ mask = np.array(True, dtype='bool') with self.assertRaises(ValueError): self.dset[mask]
def test_fieldnames(self): """ field name -> ValueError (no fields) """ with self.assertRaises(ValueError): self.dset['field']
class TestScalarCompound(TestCase):
def setUp(self): TestCase.setUp(self) self.data = np.array((42.5, -118, "Hello"), dtype=[('a', 'f'), ('b', 'i'), ('c', '|S10')]) self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self): """ Verify number of dimensions """ self.assertEqual(self.dset.ndim, 0)
def test_shape(self): """ Verify shape """ self.assertEqual(self.dset.shape, tuple())
def test_size(self): """ Verify size """ self.assertEqual(self.dset.size, 1)
def test_nbytes(self): """ Verify nbytes """ self.assertEqual(self.dset.nbytes, self.data.dtype.itemsize)
def test_ellipsis(self): """ Ellipsis -> scalar ndarray """ out = self.dset[...] # assertArrayEqual doesn't work with compounds; do manually self.assertIsInstance(out, np.ndarray) self.assertEqual(out.shape, self.data.shape) self.assertEqual(out.dtype, self.data.dtype)
def test_tuple(self): """ () -> np.void instance """ out = self.dset[()] self.assertIsInstance(out, np.void) self.assertEqual(out.dtype, self.data.dtype)
def test_slice(self): """ slice -> ValueError """ with self.assertRaises(ValueError): self.dset[0:4]
def test_multi_block_slice(self): """ MultiBlockSlice -> ValueError """ with self.assertRaises(ValueError): self.dset[h5py.MultiBlockSlice()]
def test_index(self): """ index -> ValueError """ with self.assertRaises(ValueError): self.dset[0]
# FIXME: NumPy has IndexError instead def test_indexlist(self): """ index list -> ValueError """ with self.assertRaises(ValueError): self.dset[[1,2,5]]
# FIXME: NumPy permits this def test_mask(self): """ mask -> ValueError """ mask = np.array(True, dtype='bool') with self.assertRaises(ValueError): self.dset[mask]
# FIXME: NumPy returns a scalar ndarray def test_fieldnames(self): """ field name -> bare value """ out = self.dset['a'] self.assertIsInstance(out, np.float32) self.assertEqual(out, self.dset['a'])
class TestScalarArray(TestCase):
def setUp(self): TestCase.setUp(self) self.dt = np.dtype('(3,2)f') self.data = np.array([(3.2, -119), (42, 99.8), (3.14, 0)], dtype='f') self.dset = self.f.create_dataset('x', (), dtype=self.dt) self.dset[...] = self.data
def test_ndim(self): """ Verify number of dimensions """ self.assertEqual(self.data.ndim, 2) self.assertEqual(self.dset.ndim, 0)
def test_size(self): """ Verify size """ self.assertEqual(self.dset.size, 1)
def test_nbytes(self): """ Verify nbytes """ self.assertEqual(self.dset.nbytes, self.dset.dtype.itemsize) # not sure if 'f' is always alias for 'f4'
def test_shape(self): """ Verify shape """ self.assertEqual(self.data.shape, (3, 2)) self.assertEqual(self.dset.shape, tuple())
def test_ellipsis(self): """ Ellipsis -> ndarray promoted to underlying shape """ out = self.dset[...] self.assertArrayEqual(out, self.data)
def test_tuple(self): """ () -> same as ellipsis """ out = self.dset[...] self.assertArrayEqual(out, self.data)
def test_slice(self): """ slice -> ValueError """ with self.assertRaises(ValueError): self.dset[0:4]
def test_multi_block_slice(self): """ MultiBlockSlice -> ValueError """ with self.assertRaises(ValueError): self.dset[h5py.MultiBlockSlice()]
def test_index(self): """ index -> ValueError """ with self.assertRaises(ValueError): self.dset[0]
def test_indexlist(self): """ index list -> ValueError """ with self.assertRaises(ValueError): self.dset[[]]
def test_mask(self): """ mask -> ValueError """ mask = np.array(True, dtype='bool') with self.assertRaises(ValueError): self.dset[mask]
def test_fieldnames(self): """ field name -> ValueError (no fields) """ with self.assertRaises(ValueError): self.dset['field']
@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 8, 7), 'HDF5 1.8.7+ required') class Test1DZeroFloat(TestCase):
def setUp(self): TestCase.setUp(self) self.data = np.ones((0,), dtype='f') self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self): """ Verify number of dimensions """ self.assertEqual(self.dset.ndim, 1)
def test_shape(self): """ Verify shape """ self.assertEqual(self.dset.shape, (0,))
def test_ellipsis(self): """ Ellipsis -> ndarray of matching shape """ self.assertNumpyBehavior(self.dset, self.data, np.s_[...])
def test_tuple(self): """ () -> same as ellipsis """ self.assertNumpyBehavior(self.dset, self.data, np.s_[()])
def test_slice(self): """ slice -> ndarray of shape (0,) """ self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4])
def test_slice_stop_less_than_start(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5])
def test_index(self): """ index -> out of range """ with self.assertRaises(IndexError): self.dset[0]
def test_indexlist(self): """ index list """ self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])
def test_mask(self): """ mask -> ndarray of matching shape """ mask = np.ones((0,), dtype='bool') self.assertNumpyBehavior( self.dset, self.data, np.s_[mask], # Fast reader doesn't work with boolean masks skip_fast_reader=True, )
def test_fieldnames(self): """ field name -> ValueError (no fields) """ with self.assertRaises(ValueError): self.dset['field']
class Test1DFloat(TestCase):
def setUp(self): TestCase.setUp(self) self.data = np.arange(13).astype('f') self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self): """ Verify number of dimensions """ self.assertEqual(self.dset.ndim, 1)
def test_shape(self): """ Verify shape """ self.assertEqual(self.dset.shape, (13,))
def test_ellipsis(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[...])
def test_tuple(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[()])
def test_slice_simple(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4])
def test_slice_zerosize(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[4:4])
def test_slice_strides(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[1:7:3])
def test_slice_negindexes(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[-8:-2:3])
def test_slice_stop_less_than_start(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5])
def test_slice_outofrange(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[100:400:3])
def test_slice_backwards(self): """ we disallow negative steps """ with self.assertRaises(ValueError): self.dset[::-1]
def test_slice_zerostride(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[::0])
def test_index_simple(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[3])
def test_index_neg(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[-4])
# FIXME: NumPy permits this... it adds a new axis in front def test_index_none(self): with self.assertRaises(TypeError): self.dset[None]
def test_index_illegal(self): """ Illegal slicing argument """ with self.assertRaises(TypeError): self.dset[{}]
def test_index_outofrange(self): with self.assertRaises(IndexError): self.dset[100]
def test_indexlist_simple(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[[1,2,5]])
def test_indexlist_numpyarray(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([1, 2, 5])])
def test_indexlist_single_index_ellipsis(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[[0], ...])
def test_indexlist_numpyarray_single_index_ellipsis(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([0]), ...])
def test_indexlist_numpyarray_ellipsis(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([1, 2, 5]), ...])
def test_indexlist_empty(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])
def test_indexlist_outofrange(self): with self.assertRaises(IndexError): self.dset[[100]]
def test_indexlist_nonmonotonic(self): """ we require index list values to be strictly increasing """ with self.assertRaises(TypeError): self.dset[[1,3,2]]
def test_indexlist_monotonic_negative(self): # This should work: indices are logically increasing self.assertNumpyBehavior(self.dset, self.data, np.s_[[0, 2, -2]])
with self.assertRaises(TypeError): self.dset[[-2, -3]]
def test_indexlist_repeated(self): """ we forbid repeated index values """ with self.assertRaises(TypeError): self.dset[[1,1,2]]
def test_mask_true(self): self.assertNumpyBehavior( self.dset, self.data, np.s_[self.data > -100], # Fast reader doesn't work with boolean masks skip_fast_reader=True, )
def test_mask_false(self): self.assertNumpyBehavior( self.dset, self.data, np.s_[self.data > 100], # Fast reader doesn't work with boolean masks skip_fast_reader=True, )
def test_mask_partial(self): self.assertNumpyBehavior( self.dset, self.data, np.s_[self.data > 5], # Fast reader doesn't work with boolean masks skip_fast_reader=True, )
def test_mask_wrongsize(self): """ we require the boolean mask shape to match exactly """ with self.assertRaises(TypeError): self.dset[np.ones((2,), dtype='bool')]
def test_fieldnames(self): """ field name -> ValueError (no fields) """ with self.assertRaises(ValueError): self.dset['field']
@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 8, 7), 'HDF5 1.8.7+ required') class Test2DZeroFloat(TestCase):
def setUp(self): TestCase.setUp(self) self.data = np.ones((0,3), dtype='f') self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self): """ Verify number of dimensions """ self.assertEqual(self.dset.ndim, 2)
def test_shape(self): """ Verify shape """ self.assertEqual(self.dset.shape, (0, 3))
def test_indexlist(self): """ see issue #473 """ self.assertNumpyBehavior(self.dset, self.data, np.s_[:,[0,1,2]])
class Test2DFloat(TestCase):
def setUp(self): TestCase.setUp(self) self.data = np.ones((5,3), dtype='f') self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self): """ Verify number of dimensions """ self.assertEqual(self.dset.ndim, 2)
def test_size(self): """ Verify size """ self.assertEqual(self.dset.size, 15)
def test_nbytes(self): """ Verify nbytes """ self.assertEqual(self.dset.nbytes, 15*self.data.dtype.itemsize) # not sure if 'f' is always alias for 'f4'
def test_shape(self): """ Verify shape """ self.assertEqual(self.dset.shape, (5, 3))
def test_indexlist(self): """ see issue #473 """ self.assertNumpyBehavior(self.dset, self.data, np.s_[:,[0,1,2]])
def test_index_emptylist(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[:, []]) self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])
class TestVeryLargeArray(TestCase):
def setUp(self): TestCase.setUp(self) self.dset = self.f.create_dataset('x', shape=(2**15, 2**16))
@ut.skipIf(sys.maxsize < 2**31, 'Maximum integer size >= 2**31 required') def test_size(self): self.assertEqual(self.dset.size, 2**31)
|