Software: Apache/2.4.41 (Ubuntu). PHP/8.0.30 uname -a: Linux apirnd 5.4.0-204-generic #224-Ubuntu SMP Thu Dec 5 13:38:28 UTC 2024 x86_64 uid=33(www-data) gid=33(www-data) groups=33(www-data) Safe-mode: OFF (not secure) /usr/lib/netdata/conf.d/python.d/ drwxrwxr-x | |
| Viewing file: Select action/file-type: # netdata python.d.plugin configuration for anomalies
#
# This file is in YaML format. Generally the format is:
#
# name: value
#
# There are 2 sections:
# - global variables
# - one or more JOBS
#
# JOBS allow you to collect values from multiple sources.
# Each source will have its own set of charts.
#
# JOB parameters have to be indented (using spaces only, example below).
# ----------------------------------------------------------------------
# Global Variables
# These variables set the defaults for all JOBs, however each JOB
# may define its own, overriding the defaults.
# update_every sets the default data collection frequency.
# If unset, the python.d.plugin default is used.
# update_every: 2
# priority controls the order of charts at the netdata dashboard.
# Lower numbers move the charts towards the top of the page.
# If unset, the default for python.d.plugin is used.
# priority: 60000
# ----------------------------------------------------------------------
# JOBS (data collection sources)
# Pull data from local Netdata node.
anomalies:
name: 'Anomalies'
# Host to pull data from.
host: '127.0.0.1:19999'
# Username and Password for Netdata if using basic auth.
# username: '???'
# password: '???'
# Use http or https to pull data
protocol: 'http'
# SSL verify parameter for requests.get() calls
tls_verify: true
# What charts to pull data for - A regex like 'system\..*|' or 'system\..*|apps.cpu|apps.mem' etc.
charts_regex: 'system\..*'
# Charts to exclude, useful if you would like to exclude some specific charts.
# Note: should be a ',' separated string like 'chart.name,chart.name'.
charts_to_exclude: 'system.uptime,system.entropy'
# What model to use - can be one of 'pca', 'hbos', 'iforest', 'cblof', 'loda', 'copod' or 'feature_bagging'.
# More details here: https://pyod.readthedocs.io/en/latest/pyod.models.html.
model: 'pca'
# Max number of observations to train on, to help cap compute cost of training model if you set a very large train_n_secs.
train_max_n: 100000
# How often to re-train the model (assuming update_every=1 then train_every_n=1800 represents (re)training every 30 minutes).
# Note: If you want to turn off re-training set train_every_n=0 and after initial training the models will not be retrained.
train_every_n: 1800
# The length of the window of data to train on (14400 = last 4 hours).
train_n_secs: 14400
# How many prediction steps after a train event to just use previous prediction value for.
# Used to reduce possibility of the training step itself appearing as an anomaly on the charts.
train_no_prediction_n: 10
# If you would like to train the model for the first time on a specific window then you can define it using the below two variables.
# Start of training data for initial model.
# initial_train_data_after: 1604578857
# End of training data for initial model.
# initial_train_data_before: 1604593257
# If you would like to ignore recent data in training then you can offset it by offset_n_secs.
offset_n_secs: 0
# How many lagged values of each dimension to include in the 'feature vector' each model is trained on.
lags_n: 5
# How much smoothing to apply to each dimension in the 'feature vector' each model is trained on.
smooth_n: 3
# How many differences to take in preprocessing your data.
# More info on differencing here: https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing
# diffs_n=0 would mean training models on the raw values of each dimension.
# diffs_n=1 means everything is done in terms of differences.
diffs_n: 1
# What is the typical proportion of anomalies in your data on average?
# This parameter can control the sensitivity of your models to anomalies.
# Some discussion here: https://github.com/yzhao062/pyod/issues/144
contamination: 0.001
# Set to true to include an "average_prob" dimension on anomalies probability chart which is
# just the average of all anomaly probabilities at each time step
include_average_prob: true
# Define any custom models you would like to create anomaly probabilities for, some examples below to show how.
# For example below example creates two custom models, one to run anomaly detection user and system cpu for our demo servers
# and one on the cpu and mem apps metrics for the python.d.plugin.
# custom_models:
# - name: 'demos_cpu'
# dimensions: 'london.my-netdata.io::system.cpu|user,london.my-netdata.io::system.cpu|system,newyork.my-netdata.io::system.cpu|user,newyork.my-netdata.io::system.cpu|system'
# - name: 'apps_python_d_plugin'
# dimensions: 'apps.cpu|python.d.plugin,apps.mem|python.d.plugin'
# Set to true to normalize, using min-max standardization, features used for the custom models.
# Useful if your custom models contain dimensions on very different scales an model you use does
# not internally do its own normalization. Usually best to leave as false.
# custom_models_normalize: false
# Standalone Custom models example as an additional collector job.
# custom:
# name: 'custom'
# host: '127.0.0.1:19999'
# protocol: 'http'
# charts_regex: 'None'
# charts_to_exclude: 'None'
# model: 'pca'
# train_max_n: 100000
# train_every_n: 1800
# train_n_secs: 14400
# offset_n_secs: 0
# lags_n: 5
# smooth_n: 3
# diffs_n: 1
# contamination: 0.001
# custom_models:
# - name: 'user_netdata'
# dimensions: 'users.cpu|netdata,users.mem|netdata,users.threads|netdata,users.processes|netdata,users.sockets|netdata'
# - name: 'apps_python_d_plugin'
# dimensions: 'apps.cpu|python.d.plugin,apps.mem|python.d.plugin,apps.threads|python.d.plugin,apps.processes|python.d.plugin,apps.sockets|python.d.plugin'
# Pull data from some demo nodes for cross node custom models.
# demos:
# name: 'demos'
# host: '127.0.0.1:19999'
# protocol: 'http'
# charts_regex: 'None'
# charts_to_exclude: 'None'
# model: 'pca'
# train_max_n: 100000
# train_every_n: 1800
# train_n_secs: 14400
# offset_n_secs: 0
# lags_n: 5
# smooth_n: 3
# diffs_n: 1
# contamination: 0.001
# custom_models:
# - name: 'system.cpu'
# dimensions: 'london.my-netdata.io::system.cpu|user,london.my-netdata.io::system.cpu|system,newyork.my-netdata.io::system.cpu|user,newyork.my-netdata.io::system.cpu|system'
# - name: 'system.ip'
# dimensions: 'london.my-netdata.io::system.ip|received,london.my-netdata.io::system.ip|sent,newyork.my-netdata.io::system.ip|received,newyork.my-netdata.io::system.ip|sent'
# - name: 'system.net'
# dimensions: 'london.my-netdata.io::system.net|received,london.my-netdata.io::system.net|sent,newyork.my-netdata.io::system.net|received,newyork.my-netdata.io::system.net|sent'
# - name: 'system.io'
# dimensions: 'london.my-netdata.io::system.io|in,london.my-netdata.io::system.io|out,newyork.my-netdata.io::system.io|in,newyork.my-netdata.io::system.io|out'
# Example additional job if you want to also pull data from a child streaming to your
# local parent or even a remote node so long as the Netdata REST API is accessible.
# mychildnode1:
# name: 'mychildnode1'
# host: '127.0.0.1:19999/host/mychildnode1'
# protocol: 'http'
# charts_regex: 'system\..*'
# charts_to_exclude: 'None'
# model: 'pca'
# train_max_n: 100000
# train_every_n: 1800
# train_n_secs: 14400
# offset_n_secs: 0
# lags_n: 5
# smooth_n: 3
# diffs_n: 1
# contamination: 0.001
|
:: Command execute :: | |
--[ c99shell v. 2.5 [PHP 8 Update] [24.05.2025] | Generation time: 0.0077 ]-- |