Viewing file: Engineering.php (66.76 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
<?php
namespace PhpOffice\PhpSpreadsheet\Calculation;
use Complex\Complex; use Complex\Exception as ComplexException; use PhpOffice\PhpSpreadsheet\Calculation\Engineering\ConvertUOM;
class Engineering { /** * EULER. */ const EULER = 2.71828182845904523536;
/** * parseComplex. * * Parses a complex number into its real and imaginary parts, and an I or J suffix * * @deprecated 2.0.0 No longer used by internal code. Please use the Complex\Complex class instead * * @param string $complexNumber The complex number * * @return mixed[] Indexed on "real", "imaginary" and "suffix" */ public static function parseComplex($complexNumber) { $complex = new Complex($complexNumber);
return [ 'real' => $complex->getReal(), 'imaginary' => $complex->getImaginary(), 'suffix' => $complex->getSuffix(), ]; }
/** * Formats a number base string value with leading zeroes. * * @param string $xVal The "number" to pad * @param int $places The length that we want to pad this value * * @return string The padded "number" */ private static function nbrConversionFormat($xVal, $places) { if ($places !== null) { if (is_numeric($places)) { $places = (int) $places; } else { return Functions::VALUE(); } if ($places < 0) { return Functions::NAN(); } if (strlen($xVal) <= $places) { return substr(str_pad($xVal, $places, '0', STR_PAD_LEFT), -10); }
return Functions::NAN(); }
return substr($xVal, -10); }
/** * BESSELI. * * Returns the modified Bessel function In(x), which is equivalent to the Bessel function evaluated * for purely imaginary arguments * * Excel Function: * BESSELI(x,ord) * * @param float $x The value at which to evaluate the function. * If x is nonnumeric, BESSELI returns the #VALUE! error value. * @param int $ord The order of the Bessel function. * If ord is not an integer, it is truncated. * If $ord is nonnumeric, BESSELI returns the #VALUE! error value. * If $ord < 0, BESSELI returns the #NUM! error value. * * @return float|string Result, or a string containing an error */ public static function BESSELI($x, $ord) { $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord);
if ((is_numeric($x)) && (is_numeric($ord))) { $ord = floor($ord); if ($ord < 0) { return Functions::NAN(); }
if (abs($x) <= 30) { $fResult = $fTerm = ($x / 2) ** $ord / MathTrig::FACT($ord); $ordK = 1; $fSqrX = ($x * $x) / 4; do { $fTerm *= $fSqrX; $fTerm /= ($ordK * ($ordK + $ord)); $fResult += $fTerm; } while ((abs($fTerm) > 1e-12) && (++$ordK < 100)); } else { $f_2_PI = 2 * M_PI;
$fXAbs = abs($x); $fResult = exp($fXAbs) / sqrt($f_2_PI * $fXAbs); if (($ord & 1) && ($x < 0)) { $fResult = -$fResult; } }
return (is_nan($fResult)) ? Functions::NAN() : $fResult; }
return Functions::VALUE(); }
/** * BESSELJ. * * Returns the Bessel function * * Excel Function: * BESSELJ(x,ord) * * @param float $x The value at which to evaluate the function. * If x is nonnumeric, BESSELJ returns the #VALUE! error value. * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated. * If $ord is nonnumeric, BESSELJ returns the #VALUE! error value. * If $ord < 0, BESSELJ returns the #NUM! error value. * * @return float|string Result, or a string containing an error */ public static function BESSELJ($x, $ord) { $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord);
if ((is_numeric($x)) && (is_numeric($ord))) { $ord = floor($ord); if ($ord < 0) { return Functions::NAN(); }
$fResult = 0; if (abs($x) <= 30) { $fResult = $fTerm = ($x / 2) ** $ord / MathTrig::FACT($ord); $ordK = 1; $fSqrX = ($x * $x) / -4; do { $fTerm *= $fSqrX; $fTerm /= ($ordK * ($ordK + $ord)); $fResult += $fTerm; } while ((abs($fTerm) > 1e-12) && (++$ordK < 100)); } else { $f_PI_DIV_2 = M_PI / 2; $f_PI_DIV_4 = M_PI / 4;
$fXAbs = abs($x); $fResult = sqrt(Functions::M_2DIVPI / $fXAbs) * cos($fXAbs - $ord * $f_PI_DIV_2 - $f_PI_DIV_4); if (($ord & 1) && ($x < 0)) { $fResult = -$fResult; } }
return (is_nan($fResult)) ? Functions::NAN() : $fResult; }
return Functions::VALUE(); }
private static function besselK0($fNum) { if ($fNum <= 2) { $fNum2 = $fNum * 0.5; $y = ($fNum2 * $fNum2); $fRet = -log($fNum2) * self::BESSELI($fNum, 0) + (-0.57721566 + $y * (0.42278420 + $y * (0.23069756 + $y * (0.3488590e-1 + $y * (0.262698e-2 + $y * (0.10750e-3 + $y * 0.74e-5)))))); } else { $y = 2 / $fNum; $fRet = exp(-$fNum) / sqrt($fNum) * (1.25331414 + $y * (-0.7832358e-1 + $y * (0.2189568e-1 + $y * (-0.1062446e-1 + $y * (0.587872e-2 + $y * (-0.251540e-2 + $y * 0.53208e-3)))))); }
return $fRet; }
private static function besselK1($fNum) { if ($fNum <= 2) { $fNum2 = $fNum * 0.5; $y = ($fNum2 * $fNum2); $fRet = log($fNum2) * self::BESSELI($fNum, 1) + (1 + $y * (0.15443144 + $y * (-0.67278579 + $y * (-0.18156897 + $y * (-0.1919402e-1 + $y * (-0.110404e-2 + $y * (-0.4686e-4))))))) / $fNum; } else { $y = 2 / $fNum; $fRet = exp(-$fNum) / sqrt($fNum) * (1.25331414 + $y * (0.23498619 + $y * (-0.3655620e-1 + $y * (0.1504268e-1 + $y * (-0.780353e-2 + $y * (0.325614e-2 + $y * (-0.68245e-3))))))); }
return $fRet; }
/** * BESSELK. * * Returns the modified Bessel function Kn(x), which is equivalent to the Bessel functions evaluated * for purely imaginary arguments. * * Excel Function: * BESSELK(x,ord) * * @param float $x The value at which to evaluate the function. * If x is nonnumeric, BESSELK returns the #VALUE! error value. * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated. * If $ord is nonnumeric, BESSELK returns the #VALUE! error value. * If $ord < 0, BESSELK returns the #NUM! error value. * * @return float|string Result, or a string containing an error */ public static function BESSELK($x, $ord) { $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord);
if ((is_numeric($x)) && (is_numeric($ord))) { if (($ord < 0) || ($x == 0.0)) { return Functions::NAN(); }
switch (floor($ord)) { case 0: $fBk = self::besselK0($x);
break; case 1: $fBk = self::besselK1($x);
break; default: $fTox = 2 / $x; $fBkm = self::besselK0($x); $fBk = self::besselK1($x); for ($n = 1; $n < $ord; ++$n) { $fBkp = $fBkm + $n * $fTox * $fBk; $fBkm = $fBk; $fBk = $fBkp; } }
return (is_nan($fBk)) ? Functions::NAN() : $fBk; }
return Functions::VALUE(); }
private static function besselY0($fNum) { if ($fNum < 8.0) { $y = ($fNum * $fNum); $f1 = -2957821389.0 + $y * (7062834065.0 + $y * (-512359803.6 + $y * (10879881.29 + $y * (-86327.92757 + $y * 228.4622733)))); $f2 = 40076544269.0 + $y * (745249964.8 + $y * (7189466.438 + $y * (47447.26470 + $y * (226.1030244 + $y)))); $fRet = $f1 / $f2 + 0.636619772 * self::BESSELJ($fNum, 0) * log($fNum); } else { $z = 8.0 / $fNum; $y = ($z * $z); $xx = $fNum - 0.785398164; $f1 = 1 + $y * (-0.1098628627e-2 + $y * (0.2734510407e-4 + $y * (-0.2073370639e-5 + $y * 0.2093887211e-6))); $f2 = -0.1562499995e-1 + $y * (0.1430488765e-3 + $y * (-0.6911147651e-5 + $y * (0.7621095161e-6 + $y * (-0.934945152e-7)))); $fRet = sqrt(0.636619772 / $fNum) * (sin($xx) * $f1 + $z * cos($xx) * $f2); }
return $fRet; }
private static function besselY1($fNum) { if ($fNum < 8.0) { $y = ($fNum * $fNum); $f1 = $fNum * (-0.4900604943e13 + $y * (0.1275274390e13 + $y * (-0.5153438139e11 + $y * (0.7349264551e9 + $y * (-0.4237922726e7 + $y * 0.8511937935e4))))); $f2 = 0.2499580570e14 + $y * (0.4244419664e12 + $y * (0.3733650367e10 + $y * (0.2245904002e8 + $y * (0.1020426050e6 + $y * (0.3549632885e3 + $y))))); $fRet = $f1 / $f2 + 0.636619772 * (self::BESSELJ($fNum, 1) * log($fNum) - 1 / $fNum); } else { $fRet = sqrt(0.636619772 / $fNum) * sin($fNum - 2.356194491); }
return $fRet; }
/** * BESSELY. * * Returns the Bessel function, which is also called the Weber function or the Neumann function. * * Excel Function: * BESSELY(x,ord) * * @param float $x The value at which to evaluate the function. * If x is nonnumeric, BESSELK returns the #VALUE! error value. * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated. * If $ord is nonnumeric, BESSELK returns the #VALUE! error value. * If $ord < 0, BESSELK returns the #NUM! error value. * * @return float|string Result, or a string containing an error */ public static function BESSELY($x, $ord) { $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord);
if ((is_numeric($x)) && (is_numeric($ord))) { if (($ord < 0) || ($x == 0.0)) { return Functions::NAN(); }
switch (floor($ord)) { case 0: $fBy = self::besselY0($x);
break; case 1: $fBy = self::besselY1($x);
break; default: $fTox = 2 / $x; $fBym = self::besselY0($x); $fBy = self::besselY1($x); for ($n = 1; $n < $ord; ++$n) { $fByp = $n * $fTox * $fBy - $fBym; $fBym = $fBy; $fBy = $fByp; } }
return (is_nan($fBy)) ? Functions::NAN() : $fBy; }
return Functions::VALUE(); }
/** * BINTODEC. * * Return a binary value as decimal. * * Excel Function: * BIN2DEC(x) * * @param string $x The binary number (as a string) that you want to convert. The number * cannot contain more than 10 characters (10 bits). The most significant * bit of number is the sign bit. The remaining 9 bits are magnitude bits. * Negative numbers are represented using two's-complement notation. * If number is not a valid binary number, or if number contains more than * 10 characters (10 bits), BIN2DEC returns the #NUM! error value. * * @return string */ public static function BINTODEC($x) { $x = Functions::flattenSingleValue($x);
if (is_bool($x)) { if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { $x = (int) $x; } else { return Functions::VALUE(); } } if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { $x = floor($x); } $x = (string) $x; if (strlen($x) > preg_match_all('/[01]/', $x, $out)) { return Functions::NAN(); } if (strlen($x) > 10) { return Functions::NAN(); } elseif (strlen($x) == 10) { // Two's Complement $x = substr($x, -9);
return '-' . (512 - bindec($x)); }
return bindec($x); }
/** * BINTOHEX. * * Return a binary value as hex. * * Excel Function: * BIN2HEX(x[,places]) * * @param string $x The binary number (as a string) that you want to convert. The number * cannot contain more than 10 characters (10 bits). The most significant * bit of number is the sign bit. The remaining 9 bits are magnitude bits. * Negative numbers are represented using two's-complement notation. * If number is not a valid binary number, or if number contains more than * 10 characters (10 bits), BIN2HEX returns the #NUM! error value. * @param int $places The number of characters to use. If places is omitted, BIN2HEX uses the * minimum number of characters necessary. Places is useful for padding the * return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, BIN2HEX returns the #VALUE! error value. * If places is negative, BIN2HEX returns the #NUM! error value. * * @return string */ public static function BINTOHEX($x, $places = null) { $x = Functions::flattenSingleValue($x); $places = Functions::flattenSingleValue($places);
// Argument X if (is_bool($x)) { if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { $x = (int) $x; } else { return Functions::VALUE(); } } if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { $x = floor($x); } $x = (string) $x; if (strlen($x) > preg_match_all('/[01]/', $x, $out)) { return Functions::NAN(); } if (strlen($x) > 10) { return Functions::NAN(); } elseif (strlen($x) == 10) { // Two's Complement return str_repeat('F', 8) . substr(strtoupper(dechex(bindec(substr($x, -9)))), -2); } $hexVal = (string) strtoupper(dechex(bindec($x)));
return self::nbrConversionFormat($hexVal, $places); }
/** * BINTOOCT. * * Return a binary value as octal. * * Excel Function: * BIN2OCT(x[,places]) * * @param string $x The binary number (as a string) that you want to convert. The number * cannot contain more than 10 characters (10 bits). The most significant * bit of number is the sign bit. The remaining 9 bits are magnitude bits. * Negative numbers are represented using two's-complement notation. * If number is not a valid binary number, or if number contains more than * 10 characters (10 bits), BIN2OCT returns the #NUM! error value. * @param int $places The number of characters to use. If places is omitted, BIN2OCT uses the * minimum number of characters necessary. Places is useful for padding the * return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, BIN2OCT returns the #VALUE! error value. * If places is negative, BIN2OCT returns the #NUM! error value. * * @return string */ public static function BINTOOCT($x, $places = null) { $x = Functions::flattenSingleValue($x); $places = Functions::flattenSingleValue($places);
if (is_bool($x)) { if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { $x = (int) $x; } else { return Functions::VALUE(); } } if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { $x = floor($x); } $x = (string) $x; if (strlen($x) > preg_match_all('/[01]/', $x, $out)) { return Functions::NAN(); } if (strlen($x) > 10) { return Functions::NAN(); } elseif (strlen($x) == 10) { // Two's Complement return str_repeat('7', 7) . substr(strtoupper(decoct(bindec(substr($x, -9)))), -3); } $octVal = (string) decoct(bindec($x));
return self::nbrConversionFormat($octVal, $places); }
/** * DECTOBIN. * * Return a decimal value as binary. * * Excel Function: * DEC2BIN(x[,places]) * * @param string $x The decimal integer you want to convert. If number is negative, * valid place values are ignored and DEC2BIN returns a 10-character * (10-bit) binary number in which the most significant bit is the sign * bit. The remaining 9 bits are magnitude bits. Negative numbers are * represented using two's-complement notation. * If number < -512 or if number > 511, DEC2BIN returns the #NUM! error * value. * If number is nonnumeric, DEC2BIN returns the #VALUE! error value. * If DEC2BIN requires more than places characters, it returns the #NUM! * error value. * @param int $places The number of characters to use. If places is omitted, DEC2BIN uses * the minimum number of characters necessary. Places is useful for * padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, DEC2BIN returns the #VALUE! error value. * If places is zero or negative, DEC2BIN returns the #NUM! error value. * * @return string */ public static function DECTOBIN($x, $places = null) { $x = Functions::flattenSingleValue($x); $places = Functions::flattenSingleValue($places);
if (is_bool($x)) { if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { $x = (int) $x; } else { return Functions::VALUE(); } } $x = (string) $x; if (strlen($x) > preg_match_all('/[-0123456789.]/', $x, $out)) { return Functions::VALUE(); }
$x = (string) floor($x); if ($x < -512 || $x > 511) { return Functions::NAN(); }
$r = decbin($x); // Two's Complement $r = substr($r, -10); if (strlen($r) >= 11) { return Functions::NAN(); }
return self::nbrConversionFormat($r, $places); }
/** * DECTOHEX. * * Return a decimal value as hex. * * Excel Function: * DEC2HEX(x[,places]) * * @param string $x The decimal integer you want to convert. If number is negative, * places is ignored and DEC2HEX returns a 10-character (40-bit) * hexadecimal number in which the most significant bit is the sign * bit. The remaining 39 bits are magnitude bits. Negative numbers * are represented using two's-complement notation. * If number < -549,755,813,888 or if number > 549,755,813,887, * DEC2HEX returns the #NUM! error value. * If number is nonnumeric, DEC2HEX returns the #VALUE! error value. * If DEC2HEX requires more than places characters, it returns the * #NUM! error value. * @param int $places The number of characters to use. If places is omitted, DEC2HEX uses * the minimum number of characters necessary. Places is useful for * padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, DEC2HEX returns the #VALUE! error value. * If places is zero or negative, DEC2HEX returns the #NUM! error value. * * @return string */ public static function DECTOHEX($x, $places = null) { $x = Functions::flattenSingleValue($x); $places = Functions::flattenSingleValue($places);
if (is_bool($x)) { if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { $x = (int) $x; } else { return Functions::VALUE(); } } $x = (string) $x; if (strlen($x) > preg_match_all('/[-0123456789.]/', $x, $out)) { return Functions::VALUE(); } $x = (string) floor($x); $r = strtoupper(dechex($x)); if (strlen($r) == 8) { // Two's Complement $r = 'FF' . $r; }
return self::nbrConversionFormat($r, $places); }
/** * DECTOOCT. * * Return an decimal value as octal. * * Excel Function: * DEC2OCT(x[,places]) * * @param string $x The decimal integer you want to convert. If number is negative, * places is ignored and DEC2OCT returns a 10-character (30-bit) * octal number in which the most significant bit is the sign bit. * The remaining 29 bits are magnitude bits. Negative numbers are * represented using two's-complement notation. * If number < -536,870,912 or if number > 536,870,911, DEC2OCT * returns the #NUM! error value. * If number is nonnumeric, DEC2OCT returns the #VALUE! error value. * If DEC2OCT requires more than places characters, it returns the * #NUM! error value. * @param int $places The number of characters to use. If places is omitted, DEC2OCT uses * the minimum number of characters necessary. Places is useful for * padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, DEC2OCT returns the #VALUE! error value. * If places is zero or negative, DEC2OCT returns the #NUM! error value. * * @return string */ public static function DECTOOCT($x, $places = null) { $xorig = $x; $x = Functions::flattenSingleValue($x); $places = Functions::flattenSingleValue($places);
if (is_bool($x)) { if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { $x = (int) $x; } else { return Functions::VALUE(); } } $x = (string) $x; if (strlen($x) > preg_match_all('/[-0123456789.]/', $x, $out)) { return Functions::VALUE(); } $x = (string) floor($x); $r = decoct($x); if (strlen($r) == 11) { // Two's Complement $r = substr($r, -10); }
return self::nbrConversionFormat($r, $places); }
/** * HEXTOBIN. * * Return a hex value as binary. * * Excel Function: * HEX2BIN(x[,places]) * * @param string $x the hexadecimal number you want to convert. * Number cannot contain more than 10 characters. * The most significant bit of number is the sign bit (40th bit from the right). * The remaining 9 bits are magnitude bits. * Negative numbers are represented using two's-complement notation. * If number is negative, HEX2BIN ignores places and returns a 10-character binary number. * If number is negative, it cannot be less than FFFFFFFE00, * and if number is positive, it cannot be greater than 1FF. * If number is not a valid hexadecimal number, HEX2BIN returns the #NUM! error value. * If HEX2BIN requires more than places characters, it returns the #NUM! error value. * @param int $places The number of characters to use. If places is omitted, * HEX2BIN uses the minimum number of characters necessary. Places * is useful for padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, HEX2BIN returns the #VALUE! error value. * If places is negative, HEX2BIN returns the #NUM! error value. * * @return string */ public static function HEXTOBIN($x, $places = null) { $x = Functions::flattenSingleValue($x); $places = Functions::flattenSingleValue($places);
if (is_bool($x)) { return Functions::VALUE(); } $x = (string) $x; if (strlen($x) > preg_match_all('/[0123456789ABCDEF]/', strtoupper($x), $out)) { return Functions::NAN(); }
return self::DECTOBIN(self::HEXTODEC($x), $places); }
/** * HEXTODEC. * * Return a hex value as decimal. * * Excel Function: * HEX2DEC(x) * * @param string $x The hexadecimal number you want to convert. This number cannot * contain more than 10 characters (40 bits). The most significant * bit of number is the sign bit. The remaining 39 bits are magnitude * bits. Negative numbers are represented using two's-complement * notation. * If number is not a valid hexadecimal number, HEX2DEC returns the * #NUM! error value. * * @return string */ public static function HEXTODEC($x) { $x = Functions::flattenSingleValue($x);
if (is_bool($x)) { return Functions::VALUE(); } $x = (string) $x; if (strlen($x) > preg_match_all('/[0123456789ABCDEF]/', strtoupper($x), $out)) { return Functions::NAN(); }
if (strlen($x) > 10) { return Functions::NAN(); }
$binX = ''; foreach (str_split($x) as $char) { $binX .= str_pad(base_convert($char, 16, 2), 4, '0', STR_PAD_LEFT); } if (strlen($binX) == 40 && $binX[0] == '1') { for ($i = 0; $i < 40; ++$i) { $binX[$i] = ($binX[$i] == '1' ? '0' : '1'); }
return (bindec($binX) + 1) * -1; }
return bindec($binX); }
/** * HEXTOOCT. * * Return a hex value as octal. * * Excel Function: * HEX2OCT(x[,places]) * * @param string $x The hexadecimal number you want to convert. Number cannot * contain more than 10 characters. The most significant bit of * number is the sign bit. The remaining 39 bits are magnitude * bits. Negative numbers are represented using two's-complement * notation. * If number is negative, HEX2OCT ignores places and returns a * 10-character octal number. * If number is negative, it cannot be less than FFE0000000, and * if number is positive, it cannot be greater than 1FFFFFFF. * If number is not a valid hexadecimal number, HEX2OCT returns * the #NUM! error value. * If HEX2OCT requires more than places characters, it returns * the #NUM! error value. * @param int $places The number of characters to use. If places is omitted, HEX2OCT * uses the minimum number of characters necessary. Places is * useful for padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, HEX2OCT returns the #VALUE! error * value. * If places is negative, HEX2OCT returns the #NUM! error value. * * @return string */ public static function HEXTOOCT($x, $places = null) { $x = Functions::flattenSingleValue($x); $places = Functions::flattenSingleValue($places);
if (is_bool($x)) { return Functions::VALUE(); } $x = (string) $x; if (strlen($x) > preg_match_all('/[0123456789ABCDEF]/', strtoupper($x), $out)) { return Functions::NAN(); }
$decimal = self::HEXTODEC($x); if ($decimal < -536870912 || $decimal > 536870911) { return Functions::NAN(); }
return self::DECTOOCT($decimal, $places); }
/** * OCTTOBIN. * * Return an octal value as binary. * * Excel Function: * OCT2BIN(x[,places]) * * @param string $x The octal number you want to convert. Number may not * contain more than 10 characters. The most significant * bit of number is the sign bit. The remaining 29 bits * are magnitude bits. Negative numbers are represented * using two's-complement notation. * If number is negative, OCT2BIN ignores places and returns * a 10-character binary number. * If number is negative, it cannot be less than 7777777000, * and if number is positive, it cannot be greater than 777. * If number is not a valid octal number, OCT2BIN returns * the #NUM! error value. * If OCT2BIN requires more than places characters, it * returns the #NUM! error value. * @param int $places The number of characters to use. If places is omitted, * OCT2BIN uses the minimum number of characters necessary. * Places is useful for padding the return value with * leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, OCT2BIN returns the #VALUE! * error value. * If places is negative, OCT2BIN returns the #NUM! error * value. * * @return string */ public static function OCTTOBIN($x, $places = null) { $x = Functions::flattenSingleValue($x); $places = Functions::flattenSingleValue($places);
if (is_bool($x)) { return Functions::VALUE(); } $x = (string) $x; if (preg_match_all('/[01234567]/', $x, $out) != strlen($x)) { return Functions::NAN(); }
return self::DECTOBIN(self::OCTTODEC($x), $places); }
/** * OCTTODEC. * * Return an octal value as decimal. * * Excel Function: * OCT2DEC(x) * * @param string $x The octal number you want to convert. Number may not contain * more than 10 octal characters (30 bits). The most significant * bit of number is the sign bit. The remaining 29 bits are * magnitude bits. Negative numbers are represented using * two's-complement notation. * If number is not a valid octal number, OCT2DEC returns the * #NUM! error value. * * @return string */ public static function OCTTODEC($x) { $x = Functions::flattenSingleValue($x);
if (is_bool($x)) { return Functions::VALUE(); } $x = (string) $x; if (preg_match_all('/[01234567]/', $x, $out) != strlen($x)) { return Functions::NAN(); } $binX = ''; foreach (str_split($x) as $char) { $binX .= str_pad(decbin((int) $char), 3, '0', STR_PAD_LEFT); } if (strlen($binX) == 30 && $binX[0] == '1') { for ($i = 0; $i < 30; ++$i) { $binX[$i] = ($binX[$i] == '1' ? '0' : '1'); }
return (bindec($binX) + 1) * -1; }
return bindec($binX); }
/** * OCTTOHEX. * * Return an octal value as hex. * * Excel Function: * OCT2HEX(x[,places]) * * @param string $x The octal number you want to convert. Number may not contain * more than 10 octal characters (30 bits). The most significant * bit of number is the sign bit. The remaining 29 bits are * magnitude bits. Negative numbers are represented using * two's-complement notation. * If number is negative, OCT2HEX ignores places and returns a * 10-character hexadecimal number. * If number is not a valid octal number, OCT2HEX returns the * #NUM! error value. * If OCT2HEX requires more than places characters, it returns * the #NUM! error value. * @param int $places The number of characters to use. If places is omitted, OCT2HEX * uses the minimum number of characters necessary. Places is useful * for padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, OCT2HEX returns the #VALUE! error value. * If places is negative, OCT2HEX returns the #NUM! error value. * * @return string */ public static function OCTTOHEX($x, $places = null) { $x = Functions::flattenSingleValue($x); $places = Functions::flattenSingleValue($places);
if (is_bool($x)) { return Functions::VALUE(); } $x = (string) $x; if (preg_match_all('/[01234567]/', $x, $out) != strlen($x)) { return Functions::NAN(); } $hexVal = strtoupper(dechex(self::OCTTODEC($x)));
return self::nbrConversionFormat($hexVal, $places); }
/** * COMPLEX. * * Converts real and imaginary coefficients into a complex number of the form x +/- yi or x +/- yj. * * Excel Function: * COMPLEX(realNumber,imaginary[,suffix]) * * @param float $realNumber the real coefficient of the complex number * @param float $imaginary the imaginary coefficient of the complex number * @param string $suffix The suffix for the imaginary component of the complex number. * If omitted, the suffix is assumed to be "i". * * @return string */ public static function COMPLEX($realNumber = 0.0, $imaginary = 0.0, $suffix = 'i') { $realNumber = ($realNumber === null) ? 0.0 : Functions::flattenSingleValue($realNumber); $imaginary = ($imaginary === null) ? 0.0 : Functions::flattenSingleValue($imaginary); $suffix = ($suffix === null) ? 'i' : Functions::flattenSingleValue($suffix);
if ( ((is_numeric($realNumber)) && (is_numeric($imaginary))) && (($suffix == 'i') || ($suffix == 'j') || ($suffix == '')) ) { $complex = new Complex($realNumber, $imaginary, $suffix);
return (string) $complex; }
return Functions::VALUE(); }
/** * IMAGINARY. * * Returns the imaginary coefficient of a complex number in x + yi or x + yj text format. * * Excel Function: * IMAGINARY(complexNumber) * * @param string $complexNumber the complex number for which you want the imaginary * coefficient * * @return float */ public static function IMAGINARY($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (new Complex($complexNumber))->getImaginary(); }
/** * IMREAL. * * Returns the real coefficient of a complex number in x + yi or x + yj text format. * * Excel Function: * IMREAL(complexNumber) * * @param string $complexNumber the complex number for which you want the real coefficient * * @return float */ public static function IMREAL($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (new Complex($complexNumber))->getReal(); }
/** * IMABS. * * Returns the absolute value (modulus) of a complex number in x + yi or x + yj text format. * * Excel Function: * IMABS(complexNumber) * * @param string $complexNumber the complex number for which you want the absolute value * * @return float */ public static function IMABS($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (new Complex($complexNumber))->abs(); }
/** * IMARGUMENT. * * Returns the argument theta of a complex number, i.e. the angle in radians from the real * axis to the representation of the number in polar coordinates. * * Excel Function: * IMARGUMENT(complexNumber) * * @param string $complexNumber the complex number for which you want the argument theta * * @return float|string */ public static function IMARGUMENT($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
$complex = new Complex($complexNumber); if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) { return Functions::DIV0(); }
return $complex->argument(); }
/** * IMCONJUGATE. * * Returns the complex conjugate of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCONJUGATE(complexNumber) * * @param string $complexNumber the complex number for which you want the conjugate * * @return string */ public static function IMCONJUGATE($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->conjugate(); }
/** * IMCOS. * * Returns the cosine of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCOS(complexNumber) * * @param string $complexNumber the complex number for which you want the cosine * * @return float|string */ public static function IMCOS($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->cos(); }
/** * IMCOSH. * * Returns the hyperbolic cosine of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCOSH(complexNumber) * * @param string $complexNumber the complex number for which you want the hyperbolic cosine * * @return float|string */ public static function IMCOSH($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->cosh(); }
/** * IMCOT. * * Returns the cotangent of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCOT(complexNumber) * * @param string $complexNumber the complex number for which you want the cotangent * * @return float|string */ public static function IMCOT($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->cot(); }
/** * IMCSC. * * Returns the cosecant of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCSC(complexNumber) * * @param string $complexNumber the complex number for which you want the cosecant * * @return float|string */ public static function IMCSC($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->csc(); }
/** * IMCSCH. * * Returns the hyperbolic cosecant of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCSCH(complexNumber) * * @param string $complexNumber the complex number for which you want the hyperbolic cosecant * * @return float|string */ public static function IMCSCH($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->csch(); }
/** * IMSIN. * * Returns the sine of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSIN(complexNumber) * * @param string $complexNumber the complex number for which you want the sine * * @return float|string */ public static function IMSIN($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->sin(); }
/** * IMSINH. * * Returns the hyperbolic sine of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSINH(complexNumber) * * @param string $complexNumber the complex number for which you want the hyperbolic sine * * @return float|string */ public static function IMSINH($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->sinh(); }
/** * IMSEC. * * Returns the secant of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSEC(complexNumber) * * @param string $complexNumber the complex number for which you want the secant * * @return float|string */ public static function IMSEC($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->sec(); }
/** * IMSECH. * * Returns the hyperbolic secant of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSECH(complexNumber) * * @param string $complexNumber the complex number for which you want the hyperbolic secant * * @return float|string */ public static function IMSECH($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->sech(); }
/** * IMTAN. * * Returns the tangent of a complex number in x + yi or x + yj text format. * * Excel Function: * IMTAN(complexNumber) * * @param string $complexNumber the complex number for which you want the tangent * * @return float|string */ public static function IMTAN($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->tan(); }
/** * IMSQRT. * * Returns the square root of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSQRT(complexNumber) * * @param string $complexNumber the complex number for which you want the square root * * @return string */ public static function IMSQRT($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
$theta = self::IMARGUMENT($complexNumber); if ($theta === Functions::DIV0()) { return '0'; }
return (string) (new Complex($complexNumber))->sqrt(); }
/** * IMLN. * * Returns the natural logarithm of a complex number in x + yi or x + yj text format. * * Excel Function: * IMLN(complexNumber) * * @param string $complexNumber the complex number for which you want the natural logarithm * * @return string */ public static function IMLN($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
$complex = new Complex($complexNumber); if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) { return Functions::NAN(); }
return (string) (new Complex($complexNumber))->ln(); }
/** * IMLOG10. * * Returns the common logarithm (base 10) of a complex number in x + yi or x + yj text format. * * Excel Function: * IMLOG10(complexNumber) * * @param string $complexNumber the complex number for which you want the common logarithm * * @return string */ public static function IMLOG10($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
$complex = new Complex($complexNumber); if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) { return Functions::NAN(); }
return (string) (new Complex($complexNumber))->log10(); }
/** * IMLOG2. * * Returns the base-2 logarithm of a complex number in x + yi or x + yj text format. * * Excel Function: * IMLOG2(complexNumber) * * @param string $complexNumber the complex number for which you want the base-2 logarithm * * @return string */ public static function IMLOG2($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
$complex = new Complex($complexNumber); if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) { return Functions::NAN(); }
return (string) (new Complex($complexNumber))->log2(); }
/** * IMEXP. * * Returns the exponential of a complex number in x + yi or x + yj text format. * * Excel Function: * IMEXP(complexNumber) * * @param string $complexNumber the complex number for which you want the exponential * * @return string */ public static function IMEXP($complexNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber);
return (string) (new Complex($complexNumber))->exp(); }
/** * IMPOWER. * * Returns a complex number in x + yi or x + yj text format raised to a power. * * Excel Function: * IMPOWER(complexNumber,realNumber) * * @param string $complexNumber the complex number you want to raise to a power * @param float $realNumber the power to which you want to raise the complex number * * @return string */ public static function IMPOWER($complexNumber, $realNumber) { $complexNumber = Functions::flattenSingleValue($complexNumber); $realNumber = Functions::flattenSingleValue($realNumber);
if (!is_numeric($realNumber)) { return Functions::VALUE(); }
return (string) (new Complex($complexNumber))->pow($realNumber); }
/** * IMDIV. * * Returns the quotient of two complex numbers in x + yi or x + yj text format. * * Excel Function: * IMDIV(complexDividend,complexDivisor) * * @param string $complexDividend the complex numerator or dividend * @param string $complexDivisor the complex denominator or divisor * * @return string */ public static function IMDIV($complexDividend, $complexDivisor) { $complexDividend = Functions::flattenSingleValue($complexDividend); $complexDivisor = Functions::flattenSingleValue($complexDivisor);
try { return (string) (new Complex($complexDividend))->divideby(new Complex($complexDivisor)); } catch (ComplexException $e) { return Functions::NAN(); } }
/** * IMSUB. * * Returns the difference of two complex numbers in x + yi or x + yj text format. * * Excel Function: * IMSUB(complexNumber1,complexNumber2) * * @param string $complexNumber1 the complex number from which to subtract complexNumber2 * @param string $complexNumber2 the complex number to subtract from complexNumber1 * * @return string */ public static function IMSUB($complexNumber1, $complexNumber2) { $complexNumber1 = Functions::flattenSingleValue($complexNumber1); $complexNumber2 = Functions::flattenSingleValue($complexNumber2);
try { return (string) (new Complex($complexNumber1))->subtract(new Complex($complexNumber2)); } catch (ComplexException $e) { return Functions::NAN(); } }
/** * IMSUM. * * Returns the sum of two or more complex numbers in x + yi or x + yj text format. * * Excel Function: * IMSUM(complexNumber[,complexNumber[,...]]) * * @param string ...$complexNumbers Series of complex numbers to add * * @return string */ public static function IMSUM(...$complexNumbers) { // Return value $returnValue = new Complex(0.0); $aArgs = Functions::flattenArray($complexNumbers);
try { // Loop through the arguments foreach ($aArgs as $complex) { $returnValue = $returnValue->add(new Complex($complex)); } } catch (ComplexException $e) { return Functions::NAN(); }
return (string) $returnValue; }
/** * IMPRODUCT. * * Returns the product of two or more complex numbers in x + yi or x + yj text format. * * Excel Function: * IMPRODUCT(complexNumber[,complexNumber[,...]]) * * @param string ...$complexNumbers Series of complex numbers to multiply * * @return string */ public static function IMPRODUCT(...$complexNumbers) { // Return value $returnValue = new Complex(1.0); $aArgs = Functions::flattenArray($complexNumbers);
try { // Loop through the arguments foreach ($aArgs as $complex) { $returnValue = $returnValue->multiply(new Complex($complex)); } } catch (ComplexException $e) { return Functions::NAN(); }
return (string) $returnValue; }
/** * DELTA. * * Tests whether two values are equal. Returns 1 if number1 = number2; returns 0 otherwise. * Use this function to filter a set of values. For example, by summing several DELTA * functions you calculate the count of equal pairs. This function is also known as the * Kronecker Delta function. * * Excel Function: * DELTA(a[,b]) * * @param float $a the first number * @param float $b The second number. If omitted, b is assumed to be zero. * * @return int */ public static function DELTA($a, $b = 0) { $a = Functions::flattenSingleValue($a); $b = Functions::flattenSingleValue($b);
return (int) ($a == $b); }
/** * GESTEP. * * Excel Function: * GESTEP(number[,step]) * * Returns 1 if number >= step; returns 0 (zero) otherwise * Use this function to filter a set of values. For example, by summing several GESTEP * functions you calculate the count of values that exceed a threshold. * * @param float $number the value to test against step * @param float $step The threshold value. * If you omit a value for step, GESTEP uses zero. * * @return int */ public static function GESTEP($number, $step = 0) { $number = Functions::flattenSingleValue($number); $step = Functions::flattenSingleValue($step);
return (int) ($number >= $step); }
// // Private method to calculate the erf value // private static $twoSqrtPi = 1.128379167095512574;
public static function erfVal($x) { if (abs($x) > 2.2) { return 1 - self::erfcVal($x); } $sum = $term = $x; $xsqr = ($x * $x); $j = 1; do { $term *= $xsqr / $j; $sum -= $term / (2 * $j + 1); ++$j; $term *= $xsqr / $j; $sum += $term / (2 * $j + 1); ++$j; if ($sum == 0.0) { break; } } while (abs($term / $sum) > Functions::PRECISION);
return self::$twoSqrtPi * $sum; }
/** * Validate arguments passed to the bitwise functions. * * @param mixed $value * * @return int */ private static function validateBitwiseArgument($value) { $value = Functions::flattenSingleValue($value);
if (is_int($value)) { return $value; } elseif (is_numeric($value)) { if ($value == (int) ($value)) { $value = (int) ($value); if (($value > 2 ** 48 - 1) || ($value < 0)) { throw new Exception(Functions::NAN()); }
return $value; }
throw new Exception(Functions::NAN()); }
throw new Exception(Functions::VALUE()); }
/** * BITAND. * * Returns the bitwise AND of two integer values. * * Excel Function: * BITAND(number1, number2) * * @param int $number1 * @param int $number2 * * @return int|string */ public static function BITAND($number1, $number2) { try { $number1 = self::validateBitwiseArgument($number1); $number2 = self::validateBitwiseArgument($number2); } catch (Exception $e) { return $e->getMessage(); }
return $number1 & $number2; }
/** * BITOR. * * Returns the bitwise OR of two integer values. * * Excel Function: * BITOR(number1, number2) * * @param int $number1 * @param int $number2 * * @return int|string */ public static function BITOR($number1, $number2) { try { $number1 = self::validateBitwiseArgument($number1); $number2 = self::validateBitwiseArgument($number2); } catch (Exception $e) { return $e->getMessage(); }
return $number1 | $number2; }
/** * BITXOR. * * Returns the bitwise XOR of two integer values. * * Excel Function: * BITXOR(number1, number2) * * @param int $number1 * @param int $number2 * * @return int|string */ public static function BITXOR($number1, $number2) { try { $number1 = self::validateBitwiseArgument($number1); $number2 = self::validateBitwiseArgument($number2); } catch (Exception $e) { return $e->getMessage(); }
return $number1 ^ $number2; }
/** * BITLSHIFT. * * Returns the number value shifted left by shift_amount bits. * * Excel Function: * BITLSHIFT(number, shift_amount) * * @param int $number * @param int $shiftAmount * * @return int|string */ public static function BITLSHIFT($number, $shiftAmount) { try { $number = self::validateBitwiseArgument($number); } catch (Exception $e) { return $e->getMessage(); }
$shiftAmount = Functions::flattenSingleValue($shiftAmount);
$result = $number << $shiftAmount; if ($result > 2 ** 48 - 1) { return Functions::NAN(); }
return $result; }
/** * BITRSHIFT. * * Returns the number value shifted right by shift_amount bits. * * Excel Function: * BITRSHIFT(number, shift_amount) * * @param int $number * @param int $shiftAmount * * @return int|string */ public static function BITRSHIFT($number, $shiftAmount) { try { $number = self::validateBitwiseArgument($number); } catch (Exception $e) { return $e->getMessage(); }
$shiftAmount = Functions::flattenSingleValue($shiftAmount);
return $number >> $shiftAmount; }
/** * ERF. * * Returns the error function integrated between the lower and upper bound arguments. * * Note: In Excel 2007 or earlier, if you input a negative value for the upper or lower bound arguments, * the function would return a #NUM! error. However, in Excel 2010, the function algorithm was * improved, so that it can now calculate the function for both positive and negative ranges. * PhpSpreadsheet follows Excel 2010 behaviour, and accepts negative arguments. * * Excel Function: * ERF(lower[,upper]) * * @param float $lower lower bound for integrating ERF * @param float $upper upper bound for integrating ERF. * If omitted, ERF integrates between zero and lower_limit * * @return float|string */ public static function ERF($lower, $upper = null) { $lower = Functions::flattenSingleValue($lower); $upper = Functions::flattenSingleValue($upper);
if (is_numeric($lower)) { if ($upper === null) { return self::erfVal($lower); } if (is_numeric($upper)) { return self::erfVal($upper) - self::erfVal($lower); } }
return Functions::VALUE(); }
/** * ERFPRECISE. * * Returns the error function integrated between the lower and upper bound arguments. * * Excel Function: * ERF.PRECISE(limit) * * @param float $limit bound for integrating ERF * * @return float|string */ public static function ERFPRECISE($limit) { $limit = Functions::flattenSingleValue($limit);
return self::ERF($limit); }
// // Private method to calculate the erfc value // private static $oneSqrtPi = 0.564189583547756287;
private static function erfcVal($x) { if (abs($x) < 2.2) { return 1 - self::erfVal($x); } if ($x < 0) { return 2 - self::ERFC(-$x); } $a = $n = 1; $b = $c = $x; $d = ($x * $x) + 0.5; $q1 = $q2 = $b / $d; $t = 0; do { $t = $a * $n + $b * $x; $a = $b; $b = $t; $t = $c * $n + $d * $x; $c = $d; $d = $t; $n += 0.5; $q1 = $q2; $q2 = $b / $d; } while ((abs($q1 - $q2) / $q2) > Functions::PRECISION);
return self::$oneSqrtPi * exp(-$x * $x) * $q2; }
/** * ERFC. * * Returns the complementary ERF function integrated between x and infinity * * Note: In Excel 2007 or earlier, if you input a negative value for the lower bound argument, * the function would return a #NUM! error. However, in Excel 2010, the function algorithm was * improved, so that it can now calculate the function for both positive and negative x values. * PhpSpreadsheet follows Excel 2010 behaviour, and accepts nagative arguments. * * Excel Function: * ERFC(x) * * @param float $x The lower bound for integrating ERFC * * @return float|string */ public static function ERFC($x) { $x = Functions::flattenSingleValue($x);
if (is_numeric($x)) { return self::erfcVal($x); }
return Functions::VALUE(); }
/** * getConversionGroups * Returns a list of the different conversion groups for UOM conversions. * * @Deprecated Use the getConversionCategories() method in the ConvertUOM class instead * * @return array */ public static function getConversionGroups() { return Engineering\ConvertUOM::getConversionCategories(); }
/** * getConversionGroupUnits * Returns an array of units of measure, for a specified conversion group, or for all groups. * * @Deprecated Use the getConversionCategoryUnits() method in the ConvertUOM class instead * * @param null|mixed $category * * @return array */ public static function getConversionGroupUnits($category = null) { return Engineering\ConvertUOM::getConversionCategoryUnits($category); }
/** * getConversionGroupUnitDetails. * * @Deprecated Use the getConversionCategoryUnitDetails() method in the ConvertUOM class instead * * @param null|mixed $category * * @return array */ public static function getConversionGroupUnitDetails($category = null) { return Engineering\ConvertUOM::getConversionCategoryUnitDetails($category); }
/** * getConversionMultipliers * Returns an array of the Multiplier prefixes that can be used with Units of Measure in CONVERTUOM(). * * @Deprecated Use the getConversionMultipliers() method in the ConvertUOM class instead * * @return array of mixed */ public static function getConversionMultipliers() { return Engineering\ConvertUOM::getConversionMultipliers(); }
/** * getBinaryConversionMultipliers * Returns an array of the additional Multiplier prefixes that can be used with Information Units of Measure in CONVERTUOM(). * * @Deprecated Use the getBinaryConversionMultipliers() method in the ConvertUOM class instead * * @return array of mixed */ public static function getBinaryConversionMultipliers() { return Engineering\ConvertUOM::getBinaryConversionMultipliers(); }
/** * CONVERTUOM. * * Converts a number from one measurement system to another. * For example, CONVERT can translate a table of distances in miles to a table of distances * in kilometers. * * Excel Function: * CONVERT(value,fromUOM,toUOM) * * @Deprecated Use the CONVERT() method in the ConvertUOM class instead * * @param float|int $value the value in fromUOM to convert * @param string $fromUOM the units for value * @param string $toUOM the units for the result * * @return float|string */ public static function CONVERTUOM($value, $fromUOM, $toUOM) { return Engineering\ConvertUOM::CONVERT($value, $fromUOM, $toUOM); } }
|