Viewing file: Dimension.h (2.75 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// SPDX-License-Identifier: GPL-3.0-or-later
#ifndef ML_DIMENSION_H #define ML_DIMENSION_H
#include "BitBufferCounter.h" #include "Config.h"
#include "ml-private.h"
namespace ml {
class RrdDimension { public: RrdDimension(RRDDIM *RD) : RD(RD), Ops(&RD->state->query_ops) { std::stringstream SS; SS << RD->rrdset->id << "|" << RD->name; ID = SS.str(); }
RRDDIM *getRD() const { return RD; }
time_t latestTime() { return Ops->latest_time(RD); }
time_t oldestTime() { return Ops->oldest_time(RD); }
unsigned updateEvery() const { return RD->update_every; }
const std::string getID() const { return ID; }
virtual ~RrdDimension() {}
private: RRDDIM *RD; struct rrddim_volatile::rrddim_query_ops *Ops;
std::string ID; };
enum class MLResult { Success = 0, MissingData, NaN, };
class TrainableDimension : public RrdDimension { public: TrainableDimension(RRDDIM *RD) : RrdDimension(RD), TrainEvery(Cfg.TrainEvery * updateEvery()) {}
MLResult trainModel();
CalculatedNumber computeAnomalyScore(SamplesBuffer &SB) { return Trained ? KM.anomalyScore(SB) : 0.0; }
bool shouldTrain(const TimePoint &TP) const { return (LastTrainedAt + TrainEvery) < TP; }
bool isTrained() const { return Trained; }
double updateTrainingDuration(double Duration) { return TrainingDuration.exchange(Duration); }
private: std::pair<CalculatedNumber *, size_t> getCalculatedNumbers();
public: TimePoint LastTrainedAt{Seconds{0}};
private: Seconds TrainEvery; KMeans KM;
std::atomic<bool> Trained{false}; std::atomic<double> TrainingDuration{0.0}; };
class PredictableDimension : public TrainableDimension { public: PredictableDimension(RRDDIM *RD) : TrainableDimension(RD) {}
std::pair<MLResult, bool> predict();
void addValue(CalculatedNumber Value, bool Exists);
bool isAnomalous() { return AnomalyBit; }
private: CalculatedNumber AnomalyScore{0.0}; std::atomic<bool> AnomalyBit{false};
std::vector<CalculatedNumber> CNs; };
class DetectableDimension : public PredictableDimension { public: DetectableDimension(RRDDIM *RD) : PredictableDimension(RD) {}
std::pair<bool, double> detect(size_t WindowLength, bool Reset) { bool AnomalyBit = isAnomalous();
if (Reset) NumSetBits = BBC.numSetBits();
NumSetBits += AnomalyBit; BBC.insert(AnomalyBit);
double AnomalyRate = static_cast<double>(NumSetBits) / WindowLength; return { AnomalyBit, AnomalyRate }; }
private: BitBufferCounter BBC{static_cast<size_t>(Cfg.ADMinWindowSize)}; size_t NumSetBits{0}; };
using Dimension = DetectableDimension;
} // namespace ml
#endif /* ML_DIMENSION_H */
|