Viewing file: mathutil.h (5.83 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef GOOGLE_PROTOBUF_STUBS_MATHUTIL_H_ #define GOOGLE_PROTOBUF_STUBS_MATHUTIL_H_
#include <cmath> #include <float.h> #include <limits>
#include <google/protobuf/stubs/common.h> #include <google/protobuf/stubs/logging.h>
namespace google { namespace protobuf { namespace internal {
// Like std::make_unsigned_t except floating point types map to themselves. template <typename T> using MakeUnsignedT = typename std::conditional<std::is_integral<T>::value, std::make_unsigned<T>, std::common_type<T>>::type::type;
// Like std::isnan() except a template function that is defined for all numeric // types. template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0> bool IsNan(T val) { return false; }
template <typename T, typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0> bool IsNan(T val) { return std::isnan(val); }
template<typename T> bool AlmostEquals(T a, T b) { return a == b; } template<> inline bool AlmostEquals(float a, float b) { return fabs(a - b) < 32 * FLT_EPSILON; }
template<> inline bool AlmostEquals(double a, double b) { return fabs(a - b) < 32 * DBL_EPSILON; }
} // namespace internal
class MathUtil { public: template <typename T> static T Sign(T value) { if (value == T(0) || internal::IsNan(value)) { return value; } return value > T(0) ? 1 : -1; }
template <typename T> static bool AlmostEquals(T a, T b) { return internal::AlmostEquals(a, b); }
// Largest of two values. // Works correctly for special floating point values. // Note: 0.0 and -0.0 are not differentiated by Max (Max(0.0, -0.0) is -0.0), // which should be OK because, although they (can) have different // bit representation, they are observably the same when examined // with arithmetic and (in)equality operators. template <typename T> static T Max(const T x, const T y) { return internal::IsNan(x) || x > y ? x : y; }
// Absolute value of x // Works correctly for unsigned types and // for special floating point values. // Note: 0.0 and -0.0 are not differentiated by Abs (Abs(0.0) is -0.0), // which should be OK: see the comment for Max above. template<typename T> static T Abs(const T x) { return x > T(0) ? x : -x; }
// Absolute value of the difference between two numbers. // Works correctly for signed types and special floating point values. template <typename T> static typename internal::MakeUnsignedT<T> AbsDiff(const T x, const T y) { // Carries out arithmetic as unsigned to avoid overflow. typedef typename internal::MakeUnsignedT<T> R; return x > y ? R(x) - R(y) : R(y) - R(x); }
// If two (usually floating point) numbers are within a certain // fraction of their magnitude or within a certain absolute margin of error. // This is the same as the following but faster: // WithinFraction(x, y, fraction) || WithinMargin(x, y, margin) // E.g. WithinFraction(0.0, 1e-10, 1e-5) is false but // WithinFractionOrMargin(0.0, 1e-10, 1e-5, 1e-5) is true. template<typename T> static bool WithinFractionOrMargin(const T x, const T y, const T fraction, const T margin); };
template<typename T> bool MathUtil::WithinFractionOrMargin(const T x, const T y, const T fraction, const T margin) { // Not just "0 <= fraction" to fool the compiler for unsigned types. GOOGLE_DCHECK((T(0) < fraction || T(0) == fraction) && fraction < T(1) && margin >= T(0));
// Template specialization will convert the if() condition to a constant, // which will cause the compiler to generate code for either the "if" part // or the "then" part. In this way we avoid a compiler warning // about a potential integer overflow in crosstool v12 (gcc 4.3.1). if (std::numeric_limits<T>::is_integer) { return x == y; } else { if (!std::isfinite(x) || !std::isfinite(y)) { return false; } T relative_margin = static_cast<T>(fraction * Max(Abs(x), Abs(y))); return AbsDiff(x, y) <= Max(margin, relative_margin); } }
} // namespace protobuf } // namespace google
#endif // GOOGLE_PROTOBUF_STUBS_MATHUTIL_H_
|